MATLAB®
Object-Oriented Programming

R2012b

) MathWorks

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Object-Oriented Programming
© COPYRIGHT 1984-2012 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for MATLAB 7.6 (Release 2008a)
Revised for MATLAB 7.7 (Release 2008b)
Revised for MATLAB 7.8 (Release 2009a)
Revised for MATLAB 7.9 (Release 2009b)
Revised for MATLAB 7.10 (Release 2010a)
Revised for Version 7.11 (Release 2010b)
Revised for Version 7.12 (Release 2011a)
Revised for Version 7.13 (Release 2011b)
Revised for Version 7.14 (Release 2012a)
Revised for Version 8.0 (Release 2012b)

Using Object-Oriented Design in MATLAB

Begin Using Object-Oriented Programming 1-2
Video Demo of MATLAB Classesccvuu... 1-2
MATLAB Programmer Without Object-Oriented

Programming Experience 1-2
MATLAB Programmer with Object-Oriented Programming
Experience i e e 1-2

Why Use Object-Oriented Design 14
Approaches to Writing MATLAB Programs 14
When Should You Start Creating Object-Oriented

Programs 1-8

Class Diagram Notation 1-17

MATLAB Classes Overview

2

Classes in the MATLAB Language 2-2
Classes .t e e 2-2
Some Basic Relationshipscoi.. 2-4
Introductory Examples 2-6
Learning Object-Oriented Programming 2-7

Detailed Information and Examples 2-8
Rapid Access to Information 2-8

Developing Classes — Typical Workflow 2-11
Formulatinga Classciiiiiiinno... 2-11
Implementing the BankAccount Class 2-13

Implementing the AccountManager Class 2-15

Using the BankAccount Class 2-16

Working with Objects in Functions 2-18
Flexible Workflow, 2-18
Performing a Task with an Object 2-18
Using Object Functionality 2-20

Class to Represent Structured Data 2-22
Commented Example Code 2-22
Objects As Data Structuresccuviieeooo... 2-22
Structure ofthe Data 2-23
The TensileData Classcoviiiiieennnnnnnn. 2-23
Creating an Instance and Assigning Data 2-24
Restricting Properties to Specific Values 2-25
Simplifying the Interface with a Constructor 2-26
Using a Dependent Property 2-27
Displaying TensileData Objects 2-28
Method to Plot Stress vs. Strain 2-29

Class to Implement Linked Lists 2-31
Commented Example Code 2-31
Important Concepts Demonstrated 2-31
dlnode Class Designciiiiiinnnnneennnnn. 2-32
Creating Doubly Linked Lists 2-33
Why a Handle Class for Linked Lists? 2-34
Defining the dlnode Class 2-35
Specializing the dlnode Class 2-40

Class for Graphing Functions 2-44
Commented Example Code 2-44
Class Definition Block 2-44
UsingthetopoClass ..., 2-46
Behavior of the Handle Class 2-47

3

vi Contents

Grouping Classes with Package Folders 3-3

More Information on Class Folders 3-4
Class Componentscoiiiiiinnneeeennn. 3-5
Class Building Blocks — Defining Class Members 3-5
More In Depth Information 3-6
ClassdefBlockiiiiiiiiiiinnnnn. 3-8
Specifying Attributes and Superclasses 3-8
Assigning Class Attributesc ... 3-8
Specifying Superclassesc.iiiiiiineneennnan. 3-9
Properties 3-10
What You Can Define 3-10
Initializing Property Values 3-10
Defining Default Values 3-11
Assigning Property Values from the Constructor 3-11
Initializing Properties to Unique Values 3-12
Property Attributes 3-12
Property Access Methods 3-13
Referencing Object Properties Using Variables 3-13
Methods and Functions 3-15
The Methods Block 3-15
Method Calling Syntax iiiinnnnn.. 3-16
Methods In Separate Files 3-16
Private Methods i 3-18
More Detailed Information On Methods 3-18
Class-Related Functions, 3-19
Overloading Functions and Operators 3-19
Events and Listeners i, 3-21
Specifying Events i 3-21
Listening for Events 3-21
Specifying Attributes 3-23
Attribute Syntax e e 3-23
Attribute Descriptionsiiiiiiinnn.. 3-23
Attribute Values, 3-24
Simpler Syntax for true/false Attributes 3-24

vii

viii

Contents

Calling Superclass Methods on Subclass Objects 3-26

Calling a Superclass Constructor 3-26
Calling Superclass Methods 3-27
Representative Class Code 3-29
Example of Class Definition Syntax 3-29
MATLAB Code Analyzer Warnings 3-31
Syntax Warnings and Property Names 3-31
Warnings Caused by Variable/Property Name Conflicts .. 3-31
Exception to Variable/Property Name Rule 3-32
Objects In Switch Statements 3-34
Evaluating the Switch Statement 3-34
Defining the eq Method 3-36
Enumerations in Switch Statements 3-38
Functions to Test Objects, 3-40
Functions to Query Class Members 3-41
Using the Editor and Debugger with Classes 3-42
Referringto Class Files 3-42
Modifying and Reloading Classes 3-43
Ensuring MATLAB Uses Your Changes 3-43
Compatibility with Previous Versions 3-46
New Class-Definition Syntax Introduced with MATLAB
Software Version 7.6oiiiiiieeennnnnnnn. 3-46
Changes to Class Constructorscouuueeee.... 3-47
New Features Introduced with Version 7.6 3-48
Examplesof Oldand Newc ... 3-48
Comparing MATLAB with Other OO Languages 3-50
Some Differences from C++ and Sun Java Code 3-50
Modifying Objects it 3-51
Common Object-Oriented Techniques 3-56

Defining and Organizing Classes

q

User-Defined Classesc.ciiiiiinnn... 4-2
What is a Class Definition 4-2
Attributes for Class Members 4-2
Kindsof Classesc.couiiiiiiinnnnnnnnns 4-3
Constructing Objectsciiiiiiniiinninnnn.. 4-3
Class Hierarchiescciiiiiiiiinnnnennn.. 4-3

Class Definition, 4-4
classdef Syntaxt 4-4
Examples of Class Definitions 4-4

Class Attributes i 4-6
Table of Class Attributesccoiiiiieenn. 4-6
Specifying Attributes 4-7

Expressions in Class Definitions 4-9
Basic Knowledge, 4-9
Where to Use Expressions in Class Definitions 4-9
How MATLAB Evaluates Expressions 4-11

Organizing Classesin Folders 4-15
Options for Class Folders, 4-15
@-Foldersuiiitin i e e 4-15
Path Folders 4-16
Access to Functions Defined in Private Folders 4-16
Class Precedence and MATLAB Path 4-16

Class Precedence cciiiiiuuninn.. 4-18
InferiorClasses Attribute, 4-18

Packages Create Namespaces 4-20
Internal Packages 4-20
Package Folders i, 4-20
Referencing Package Members Within Packages 4-21
Referencing Package Members from Outside the

Package 4-22
Packages and the MATLABPath 4-23

ix

X

Contents

Importing Classescc0iiiiiiininnnnnnn.. 4-25
Related Information, 4-25
Syntax for Importing Classescccovvvvvo.... 4-25

Value or Handle Class — Which to Use

5

Comparing Handle and Value Classes 5-2
Basic Difference i 5-2
Why Select Handleor Value 5-2
Behavior of MATLAB Built-In Classes 5-3
Behavior of User-Defined Classes 5-4

Which Kind of ClasstoUse 5-9
Examples of Value and Handle Classes 5-9
When to Use Handle Classes 5-9
When to Use Value Classes ccoiiininn... 5-10

The Handle Superclass 5-11
Building on the Handle Class 5-11
Handle Class Methods, 5-12
Relational Methods, 5-12
Testing Handle Validity v iiua.. 5-13
When MATLAB Destroys Objects 5-15

Handle Class Destructorc.c0...... 5-16
Basic Knowledge, 5-16
Syntax of Class Destructor Method 5-16
When to Define a Destructor Method 5-17
Destructors in Class Hierarchies 5-18
Object Lifecycle ...t 5-18
Restrict Explicit Object Deletion 5-20
Nondestructor Delete Methods 5-21

Finding Handle Objects and Properties 5-22
Finding Handle Objectsc.coii... 5-22
Finding Handle Object Properties 5-22

Implementing a Set/Get Interface for Properties 5-23

The Standard Set/Get Interface 5-23
Subclass hgsetget i 5-23
Get Method Syntaxciiiiiinnnneennnnn. 5-23
Set Method Syntax 0., 5-24
Class Derived from hgsetget 5-25
Controlling the Number of Instances 5-31
Limiting Instances 5-31

Properties — Storing Class Data

6

How to Use Properties 6-2
What Are Properties 6-2
Types of Propertiescouiiiiiiinnnn. 6-3

Defining Properties, 6-5
Property Definition Block 6-5
Accessing Property Values 6-6
Inheritance of Properties, 6-6
Specifying Property Attributes 6-7

Property Attributes 6-8
Table of Property Attributes 6-8

Mutable and Immutable Properties 6-13
Setting Property Values 6-13

Property Access Methods 6-14
Property Access Methods 6-14
Property Set Methods 6-16
Property Get Methods 6-18
Set and Get Methods for Dependent Properties 6-18
Set and Get Method Execution and Property Events 6-21
Access Methods and Subscripted Reference and

Assignment e 6-22

xi

xii

Contents

Performing Additional Steps with Property Access
Methods i

Properties Containing Objects
Assigning to Read-Only Properties Containing Objects ...

Dynamic Properties — Adding Properties to an
Instance
What Are Dynamic Properties
Defining Dynamic Properties
Responding to Dynamic-Property Events
Defining Property Access Methods for Dynamic

Properties
Dynamic Properties and ConstructOnLoad

Methods — Defining Class Operations

7

How to Use Methods
Class Methods i,
Method Naming iiiinnnnn..

Method Attributes i,
Table of Method Attributes,

Ordinary Methods
Defining Methods
Determining Which Method Is Invoked
Specifying Precedencecc0iiiiii..
Controlling Access to Methods
Invoking Superclass Methods in Subclass Methods
Invoking Built-In Functions

Class Constructor Methods
Rules for Constructors
Related Information,
Examples of Class Constructors
Initializing the Object Within a Constructor

7-2
7-2
7-3

Constructing Subclasses, 7-20

Errors During Class Construction 7-22
Basic Structure of Constructor Methods 7-23
Static Methods 7-25
Why Define Static Methods 7-25
Calling Static Methods, 7-26
Overloading Functions for Your Class 7-27
Overloading MATLAB Functions 7-27
Rules for Naming to Avoid Conflicts 7-28
Object Precedence in Expressions Using Operators ... 7-30
Specifying Precedence of User-Defined Classes 7-30
Class Methods for Graphics Callbacks 7-32
Callback Argumentsciiiiinnnneennnnn. 7-32
General Syntax for Callbacks 7-32
Object Scope and Anonymous Functions 7-33
Example — Class Method as a Slider Callback 7-34

Object Arrays

8

Creating Object Arrayscciiiiiinnnneennnn. 8-2
Basic Knowledge, 8-2
Building Arrays in the Constructor 8-2
Initializing Arrays of Value Objects 8-3
Initial Value of Object Properties 8-5
Creating Empty Arrayscciiiiinine.. 8-5
Initializing Arrays of Handle Objects 8-7
Referencing Property Values in Object Arrays 8-9
Object Arrays with Dynamic Properties 8-10

Concatenating Objects of Different Classes 8-13
Basic Knowledge i, 8-13
MATLAB Concatenation Rules 8-13
Concatenating Objectsciiiiiinnnneeennnn. 8-14

xiii

xiv

Contents

Converting to the Dominant Class 8-14
Implementing Converter Methods 8-17

Events — Sending and Responding to Messages

92

Learning to Use Events and Listeners 9-2
Why Use Events and Listeners 9-2
What You Needto Know 9-2
Customizing EventData 9-3
Observe Property Changesccvuiiiieeoo... 9-6

Create a Property Set Listener 9-8

Events and Listeners — Concepts 9-11
The Event Model 9-11
Default Event Data 9-13
Events Only in Handle Classes 9-13
Property-Set and Query Events 9-14
Listenersiiiiiiii e e e e 9-15

Event Attributes i 9-16
Table of Event Attributes 9-16

Events and Listeners — Syntax and Techniques 9-18
Naming Events 9-18
Triggering Eventso, 9-18
Listeningto Events 9-19
Defining Event-SpecificData 9-21
Ways to Create Listenersccciiiiininn... 9-22
Defining Listener Callback Functions 9-24
Callback Executioncuiiiiinnniinnne... 9-26

Listen for Changes to Property Values 9-27
Creating Property Listeners 9-27
Property Event and Listener Classes 9-29
Aborting Set When Value Does Not Change 9-31

Update Graphs Using Events and Listeners 9-34

Example Overview, 9-34
Access Fully Commented Example Code 9-35
Techniques Demonstrated in This Example 9-36
Summary of fcneval Classot 9-36
Summary of fecnview Class ... oo 9-37
Methods Inherited from Handle Class 9-39
Using the fcneval and fenview Classes 9-39
Implementing the UpdateGraph Event and Listener 9-42
The PostSet Event Listener 9-47
Enabling and Disabling the Listeners 9-50

Building on Other Classes

Hierarchies of Classes — Concepts 10-2
Classificationc.oiiiiiiiieeennnnnnnnnen.. 10-2
Developing the Abstraction 10-3
Designing Class Hierarchies 10-4
Super and Subclass Behavior 10-4
Implementation and Interface Inheritance 10-5

Creating Subclasses — Syntax and Techniques 10-7
Defininga Subclasscoiiiii i, 10-7
Initializing Superclasses from Subclasses 10-7
Constructor Arguments and Object Initialization 10-10
Call Only Direct Superclass from Constructor 10-10
Sequence of Constructor Calls in a Class Hierarchy 10-12
Using a Subclass to Create an Alias for an Existing

Class oot e e e 10-12

Modifying Superclass Methods and Properties 10-14
Modifying Superclass Methods 10-14
Modifying Superclass Properties 10-16
Private Local Property Takes Precedence in Method 10-16

Subclassing Multiple Classes 10-18
Class Member Compatibility 10-18
Using Multiple Inheritance 10-19

XV

Controlling Allowed Subclasses 10-20

Basic Knowledge, 10-20
Why Control Allowed Subclasses 10-20
Specify Allowed Subclasses ..., 10-21
Define a Sealed Hierarchy of Classes 10-22
Controlling Access to Class Members 10-24
Basic Knowledge, 10-24
Applications for Access Control Lists 10-25
Specify Access to Class Members 10-26
Properties with Access Lists 10-29
Methods with Access Lists, 10-29
Abstract Methods with Access Lists 10-33
Supporting Both Handle and Value Subclasses 10-34
Basic Knowledge, 10-34
Handle Compatibility Rules 10-34
Defining Handle-Compatible Classes 10-35
Subclassing Handle-Compatible Classes 10-38
Methods for Handle Compatible Classes 10-40
Handle-Compatible Classes and Heterogeneous Arrays .. 10-41
Subclassing MATLAB Built-In Types 10-43
MATLAB Built-In Typescooiiiiiiiiiiinn... 10-43
Why Subclass Built-In Types, .. 10-44
Behavior of Built-In Functions with Subclass Objects 10-45
A Class to Manageuint8 Data 10-52
Subclasses of Built-In Types with Properties 10-59
Understanding size and numel 10-65
A Class to Represent Hardware 10-70
Determining the Classof an Array 10-73
Querying the Class Namec ... 10-73
Testing for Classciiiiiiini it 10-73
Testing for Specific Types ..., 10-74
Testing for Most Derived Class 10-75
Defining Abstract Classes 10-77
Abstract Classesc.iiiiiiiiii i 10-77
Declaring Classes as Abstract 10-78
Determine If a Class Is Abstract 10-79
Find Inherited Abstract Properties and Methods 10-80

xvi Contents

Defining Interfaces oo, 10-82
Interfaces and Abstract Classes 10-82
An Interface for Classes Implementing Graphs 10-82

Saving and Loading Objects

Understanding the Save and Load Process 11-2
The Default Save and Load Process 11-2
When to Modify Object Saving and Loading 11-4

Modifying the Save and Load Process 11-6
Class saveobj and loadobj Methods 11-6
Processing Objects During Load 11-7
Save and Load Applicationsccouviie... 11-7

Maintaining Class Compatibility 11-9
Versions of a Phone Book Application Program 11-9

Passing Arguments to Constructors During Load 11-14
Calling Constructors When Loading Objects 11-14
Code for This Example 11-14
Example Overview, 11-14

Saving and Loading Objects from Class Hierarchies .. 11-17

Saving and Loading Subclass Objects 11-17
Saving and Loading Dynamic Properties 11-20
Reconstructing Objects That Have Dynamic Properties .. 11-20
Tips for Saving and Loading 11-22
Using Default Property Values to Reduce Storage 11-22
Avoiding Property Initialization Order Dependency 11-23
When to Use Transient Properties 11-25
Calling Constructor When Loading 11-25

xXvii

xviii

12

Contents

Enumerations

Defining Named Values 12-2
Kinds of Predefined Names 12-2
Working with Enumerations 12-4
Basic Knowledge, 12-4
Using Enumeration Classesc. .. 12-5
Defining Methods in Enumeration Classes 12-9
Defining Properties in Enumeration Classes 12-9
Array Expansion Operationsc.oovv..... 12-11
Constructor Calling Sequenceccuuuuuu.... 12-11
Restrictions Applied to Enumeration Classes 12-13
Techniques for Defining Enumerations 12-13
Enumerations Derived from Built-In Types 12-16
Basic Knowledge, 12-16
Why Derive Enumerations from Built-In Types 12-16
Aliasing Enumeration Names 12-18
Superclass Constructor Returns Underlying Value 12-19
Default Convertercciiiiiniiennnnennn. 12-20

Mutable (Handle) vs. Immutable (Value) Enumeration

Membersoiiuiitttiiniiiiiiena 12-22
Basic Knowledge, 12-22
Selecting Handle- or Value-Based Enumerations 12-22
Value-Based Enumeration Classes 12-22
Handle-Based Enumeration Classes 12-24
Using Enumerations to Represent a State 12-28
Enumerations That Encapsulate Data 12-30
Basic Knowledge, 12-30
Store Data in Properties 12-30
Saving and Loading Enumerations 12-35
Basic Knowledge, 12-35
Built-In and Value-Based Enumeration Classes 12-35
Simple and Handle-Based Enumeration Classes 12-35
Causes: Loading as Struct Instead of Object 12-36

Constant Properties

13

Properties with Constant Values 13-2
Defining Named Constants 13-2
Constant Property Assigned a Handle Object 13-4
Constant Property Assigned Any Class Instance 13-4

Information from Class Metadata

14

Class Metadatac0iiiiiiiinnnnnnnnnn 14-2
What Is Class Metadata? n.. 14-2
The meta Packagec0 .. 14-2
Metaclass Objectsottt 14-3

Inspecting Class and Object Metadata 14-5
Inspectinga Classcciiiiiiiiinnnn. 14-5
Metaclass EnumeratedValues Property 14-7

Finding Objects with Specific Values 14-9
Find Handle Objects, 14-9
Find by Attribute Settings 14-10

Getting Information About Properties 14-14
The meta.property object 14-14
How to Find Properties with Specific Attributes 14-18

Find Default Values in Property Metadata 14-21
meta.property Object, 14-21
meta.property Data 14-21

xix

XX

Contents

Specializing Object Behavior

15

Methods That Modify Default Behavior 15-2
How to Modify Behavior 15-2
Which Methods Control Which Behaviors 15-2
Overloading and Overriding Functions and Methods 15-4
When to Overload MATLAB Functions 15-5
Caution When Overloading MATLAB Functions 15-6

Redefining Concatenation for Your Class 15-8
Default Concatenationccoiuiiinnennn. 15-8

Object Displaycciiiiiniiiiiiiiiiennnn. 15-9
Default Displayi i, 15-9

Converting Objects to Another Class 15-11
Why Implement a Converter 15-11

Indexed Reference and Assignment 15-13
OVeIVIBW & ittt ettt et e e e 15-13
Default Indexed Reference and Assignment 15-13
What You Can Modifycoiiiiiieenina... 15-15
subsref and subsasgn Within Class Methods — Built-In

Calledt e e e 15-16
Understanding Indexed Reference 15-18
Avoid Overriding Access Attributes 15-21
Understanding Indexed Assignment 15-23
A Class with Modified Indexing 15-26
Defining end Indexing for an Object 15-31
Using Objects asIndices 15-32

Implementing Operators for Your Class 15-35
Overloading Operatorsccviiiennneennn.. 15-35
MATLAB Operators and Associated Functions 15-36

Implementing a Class for Polynomials

16

A PolynomialClasscc..u... 16-2
Adding a Polynomial Object to the MATLAB Language .. 16-2
Displaying the Class Files 16-2
Summary of the DocPolynom Class 16-3
The DocPolynom Constructor Method 16-5
Removing Irrelevant Coefficients 16-6
Converting DocPolynom Objects to Other Types 16-7
The DocPolynom disp Method 16-10
The DocPolynom subsref Method 16-11
Defining Arithmetic Operators for DocPolynom 16-14
Overloading MATLAB Functions for the DocPolynom

ClaSS oot e e 16-16

17

A Simple Class Hierarchy 17-2
Shared and Specialized Properties 17-2
Designing a Class for Financial Assets 17-3
Displaying the Class Files oo u.. 17-4
Summary of the DocAsset Class 17-4
The DocAsset Constructor Method 17-5
The DocAsset Display Method 17-6
Designing a Class for Stock Assets 17-7
Displaying the Class Files 17-7
Summary of the DocStock Class 17-7
Designing a Class for Bond Assets 17-10
Displaying the Class Files vu.. 17-10
Summary of the DocBond Class 17-11
Designing a Class for Savings Assets 17-15
Displaying the Class Files 17-15
Summary of the DocSavings Class 17-15

Containing Assets in a Portfolio 17-19
Kinds of Containment tvinuenn. 17-19
Designing the DocPortfolio Class 17-19

xxi

xxii

Contents

Displaying the Class Files 17-19

Summary of the DocPortfolio Class 17-20
The DocPortfolio Constructor Method 17-22
The DocPortfolio disp Method 17-23
The DocPortfolio pie3 Method 17-23
Visualizing a Portfolio 17-25

Index

Using Object-Oriented
Design in MATLAB

¢ “Begin Using Object-Oriented Programming” on page 1-2
e “Why Use Object-Oriented Design” on page 1-4

e “Class Diagram Notation” on page 1-17

1 Using Object-Oriented Design in MATLAB®

1-2

Begin Using Object-Oriented Programming

In this section...

“Video Demo of MATLAB Classes” on page 1-2

“MATLAB Programmer Without Object-Oriented Programming Experience”
on page 1-2

“MATLAB Programmer with Object-Oriented Programming Experience”
on page 1-2

Video Demo of MATLAB Classes

You can watch a brief presentation on MATLAB® class development by
clicking this link:

Play video

MATLAB Programmer Without Object-Oriented
Programming Experience

If you create MATLAB programs, but are not defining classes to accomplish
your tasks, start with the following sections:

® “Why Use Object-Oriented Design” on page 1-4

¢ “Classes in the MATLAB Language” on page 2-2

¢ “Introductory Examples” on page 2-6

¢ “Learning Object-Oriented Programming” on page 2-7

MATLAB Programmer with Object-Oriented
Programming Experience

If have experience with both MATLAB programming and object-oriented
techniques, start with the following sections:

e “Class Syntax Fundamentals”

e “Compatibility with Previous Versions ” on page 3-46

Begin Using Object-Oriented Programming

¢ “Comparing MATLAB with Other OO Languages” on page 3-50

1 Using Object-Oriented Design in MATLAB®

1-4

Why Use Object-Oriented Design

In this section...

“Approaches to Writing MATLAB Programs” on page 1-4
“When Should You Start Creating Object-Oriented Programs” on page 1-8

Approaches to Writing MATLAB Programs

Creating software applications typically involves designing how to represent
the application data and determining how to implement operations performed
on that data. Procedural programs pass data to functions, which perform the
necessary operations on the data. Object-oriented software encapsulates
data and operations in objects that interact with each other via the object’s
interface.

The MATLAB language enables you to create programs using both procedural
and object-oriented techniques and to use objects and ordinary functions in
your programs.

Procedural Program Design

In procedural programming, your design focuses on steps that must be
executed to achieve a desired state. You typically represent data as individual
variables or fields of a structure and implement operations as functions

that take the variables as arguments. Programs usually call a sequence of
functions, each one of which is passed data, and then returns modified data.
Each function performs an operation or perhaps many operations on the data.

Object-Oriented Program Design
The object-oriented program design involves:

¢ Identifying the components of the system or application that you want
to build

¢ Analyzing and identifying patterns to determine what components are used
repeatedly or share characteristics

¢ (Classifying components based on similarities and differences

Why Use Object-Oriented Design

After performing this analysis, you define classes that describe the objects
your application uses.

Classes and Obijects

A class describes a set of objects with common characteristics. Objects are
specific instances of a class. The values contained in an object’s properties are
what make an object different from other objects of the same class (an object
of class double might have a value of 5). The functions defined by the class
(called methods) are what implement object behaviors that are common to all
objects of a class (you can add two doubles regardless of their values).

Using Objects in MATLAB Programs

The MATLAB language defines objects that are designed for use in any
MATLAB code. For example, consider the try/catch programming construct.

If the code executed in the try block generates an error, program control
passes to the code in the catch block. This behavior enables your program
to provide special error handling that is more appropriate to your particular
application. However, you must have enough information about the error to
take the appropriate action.

MATLAB provides detailed information about the error by passing an
MException object to functions executing the try/catch blocks.

The following try/catch blocks display the error message stored in an
MException object when a function (surf in this case) is called without the
necessary arguments:

try
surf
catch ME
disp(ME.message)
end
Not enough input arguments.

In this code, ME is an object of the MException class, which is returned by
the catch statement to the function’s workspace. Displaying the value of
the object’s message property returns information about the error (the surf

1-5

1 Using Object-Oriented Design in MATLAB®

1-6

function requires input arguments). However, this is not all the information
available in the MException object.

You can list the public properties of an object with the properties function:

properties(ME)
Properties for class MException:
identifier
message
cause
stack

Objects Organize Data

The information returned in an MException object is stored in properties,
which are much like structure fields. You reference a property using dot
notation, as in ME.message. This reference returns the value of the property.
For example,

class(ME.message)
ans =
char

shows that the value of the message property is an array of class char (a text
string). The stack property contains a MATLAB struct:

ME.stack

ans =
file: [1x90 char]
name: 'surf'
line: 50

You can simply treat the property reference, ME.stack as a structure and
reference its fields:

ME.stack.file
ans =
D:\myMATLAB\matlab\toolbox\matlab\graph3d\surf.m

The file field of the struct contained in the stack property is a character
array:

Why Use Object-Oriented Design

class(ME.stack.file)
ans =
char

You could, for example, use a property reference in MATLAB functions:

strcmp (ME.stack.name, 'surf')
ans =
1

Object properties can contain any class of value and can even determine their
value dynamically. This provides more flexibility than a structure and is
easier to investigate than a cell array, which lacks fieldnames and requires
indexing into various cells using array dimensions.

Objects Manage Their Own Data

You could write a function that generates a report from the data returned by
MException object properties. This function could become quite complicated
because it would have to be able to handle all possible errors. Perhaps you
would use different functions for different try/catch blocks in your program.
If the data returned by the error object needed to change, you would have to
update the functions you have written to use the new data.

Objects provide an advantage in that objects define their own operations. A
requirement of the MException object is that it can generate its own report.
The methods that implement an object’s operations are part of the object
definition (i.e., specified by the class that defines the object). The object
definition might be modified many times, but the interface your program (and
other programs) use does not change. Think of your program as a client of the
object, which isolates your code from the object’s code.

To see what methods exist for MException objects, use the methods function:

methods (ME)
Methods for class MException:

addCause getReport ne throw
eq isequal rethrow throwAsCaller

Static methods:

1-7

1 Using Object-Oriented Design in MATLAB®

1-8

last

You can use these methods like any other MATLAB statement when there is
an MException object in the workspace. For example:

ME.getReport

ans =

Error using ==> surf

Not enough input arguments.

Objects often have methods that overload (redefined for the particular class of
the object) MATLAB functions (e.g., isequal, fieldnames, etc.). This enables
you to use objects just like other values. For example, MException objects
have an isequal method. This method enables you to compare these objects
in the same way you would compare variables containing doubles. If ME and
ME2 are MException objects, you can compare them with this statement:

isequal (ME,ME2)

However, what really happens in this case is MATLAB calls the MException
isequal method because you have passed MException objects to isequal.

Similarly, the eq method enables you to use the == operator with MException
objects:

ME == ME2

Of course, objects should support only those methods that make sense. For
example, it would probably not make sense to multiply MException objects so
the MException class does not implement methods to do so.

When Should You Start Creating Object-Oriented
Programs
Objects are well integrated into the MATLAB language, regardless of whether

you are writing simple functions, working interactively in the command
window, or creating large applications.

Simple programming tasks are easily implemented as simple functions, but
as the magnitude and complexity of your tasks increase, functions become
more complex and difficult to manage.

Why Use Object-Oriented Design

As functions become too large, you might break them into smaller functions
and pass data from one to the other. However, as the number of functions
becomes large, designing and managing the data passed to functions becomes
difficult and error prone. At this point, you should consider moving your
MATLAB programming tasks to object-oriented designs.

Understanding a Problem in Terms of Its Objects

Thinking in terms of things or objects is simpler and more natural for some
problems. You might think of the nouns in your problem statement as the
objects you need to define and the verbs as the operations you must perform.

For example, consider performing an analysis of economic institutions. It
would be difficult to represent the various institutions as procedures even
though they are all actors in the overall economy. Consider banks, mortgage
companies, credit unions. You can represent each institution as an object that
performs certain actions and contains certain data. The process of designing
the objects involves identifying the characteristics of these institutions that
are important to your application.

Identify Commonalities. All of these institutions belong in the general class
of lending institutions, so all objects might provide a loan operation and have
a Rate property that stores the current interest rate.

Identify Differences. You must also consider how each institution differs. A
mortgage company might provide only home mortgage loans. Therefore, the
loan operation might need be specialized for mortgage companies to provide
fixRateLoan and varRateLoan methods to accommodate two loan types.

Consider Interactions. Institutions can interact, as well. For example, a
mortgage company might sell a mortgage to a bank. To support this activity,
the mortgage company object would support a sel1Mortgage operation and
the bank object would support a buyMortgage operation.

You might also define a loan object, which would represent a particular loan.
It might need Amount, Rate, and Lender properties. When the loan is sold
to another institution, the Lender property could be changed, but all other
information is neatly packaged within the loan object.

1-9

1 Using Object-Oriented Design in MATLAB®

1-10

Add Only What Is Necessary. It is likely that these institutions engage in
many activities that are not of interest to your application. During the design
phase, you need to determine what operations and data an object needs to
contain based on your problem definition.

Managing Data. Objects encapsulate the model of what the object
represents. If the object represents a kind of lending institution, all the
behaviors of lending institutions that are necessary for your application are
contained by this object. This approach simplifies the management of data
that is necessary in a typical procedural program.

Objects Manage Internal State

In the simplest sense, objects are data structures that encapsulate some
internal state, which you access via its methods. When you invoke a method,
it is the object that determines exactly what code to execute. In fact, two
objects of the same class might execute different code paths for the same
method invocation because their internal state is different. The internal
workings of the object need not be of concern to your program — you simply
use the interface the object provides.

Hiding the internal state from general access leads to more robust code. If a
loan object’s Lender property can be changed only by the object’s newLender
method, then inadvertent access is less likely than if the loan data were
stored in a cell array where an indexing assignment statement could damage
the data.

Objects provide a number of useful features not available from structures and
cell arrays. For example, objects provide the ability to:

® Constrain the data assigned to any given property by executing a function
to test values whenever an assignment is made

¢ (Calculate the value of a property only when it is queried and thereby avoid
storing data that might be dependent on the state of other data

® Broadcast notices when any property value is queried or changed, to which
any number of listeners can respond by executing functions

® Restrict access to properties and methods

Why Use Object-Oriented Design

Reducing Redundancy

As the complexity of your program increases, the benefits of an object-oriented
design become more apparent. For example, suppose you need to implement
the following procedure as part of your application:

1 Check inputs
2 Perform computation on the first input argument
3 Transform the result of step 2 based on the second input argument

4 Check validity of outputs and return values

This simple procedure is easily implemented as an ordinary function. But
now suppose you need to use this procedure again somewhere in your
application, except that step 2 must perform a different computation. You
could simply copy and paste the first implementation, and then rewrite step
2. Or you could create a function that accepted an option indicating which
computation to make, and so on. However, these options lead to more and
more complicated code.

An object-oriented design could result in a simpler solution by factoring

out the common code into what is called a base class. The base class would
define the algorithm used and implement whatever is common to all cases
that use this code. Step 2 could be defined syntactically, but not implemented,
leaving the specialized implementation to the classes that you then derive
from this base class.

Step 1
function checkInputs()

% actual implementation
end

Step 2

function results = computeOnFirstArg()
% specify syntax only

end

Step 3
function transformResults()

1-11

1 Using Object-Oriented Design in MATLAB®

1-12

% actual implementation
end

Step 4

function out = checkOutputs()
% actual implementation

end

The code in the base class is not copied or modified, it is inherited by the
various classes you derive from the base class. This reduces the amount
of code to be tested, and isolates your program from changes to the basic
procedure.

Defining Consistent Interfaces

The use of a class as the basis for similar, but more specialized classes is a
useful technique in object-oriented programming. This class is often called
an interface class. Incorporating this kind of class into your program design
enables you to:

¢ Identify the requirements of a particular objective

® Encode these requirements into your program as an interface class

For example, suppose you are creating an object to return information about

errors that occur during the execution of specific blocks of code. There might

be functions that return special types of information that you want to include
in an error report only when the error is generated by these functions.

The interface class, from which all error objects are derived, could specify that
all error objects must support a getReport method, but not specify how to
implement that method. The class of error object created for the functions
returning special information could implement its version of the getReport
method to handle the different data.

The requirement defined by the interface class is that all error objects be able
to display an error report. All programs that use this feature can rely on it
being implement in a consistent way.

Why Use Object-Oriented Design

All of the classes derived from the interface class can create a method called
getReport without any name conflicts because it is the class of the object that
determines which getReport is called.

Reducing Complexity

Objects reduce complexity by reducing what you need to know to use a
component or system. This happens in a couple of ways:

® Objects provide an interface that hides implementation details.

® Objects enforce rules that control how objects interact.
To illustrate these advantages, consider the implementation of a data
structure called a doubly linked list. See “Class to Implement Linked Lists”

on page 2-31 for the actually implementation.

Here is a diagram of a three-element list:

<\ n3
Proper/ proper/ Properties
Next Next

Prev

Prev

n2.Prev n2 n2.Next

To add a new node to the list, it is necessary to disconnect the existing nodes
in the list, insert the new node, and reconnect the nodes appropriately. Here
are the basic steps:

First disconnect the nodes:

1 Unlink n2.Prev from n1

2 Unlink n1.Next from n2
Now create the new node, connect it, and renumber the original nodes:

3 Link new.Prev to n1

1-13

1 Using Object-Oriented Design in MATLAB®

1-14

4 Link new.Next to n3 (was n2)
5 Link n1.Next to new (will be n2)

6 Link n3.Prev to new (will be n2)

|
/ Properties Propertles Propertles
Next Next

Next

Prev Prev

Prev

{

Newly inserted node

The details of how methods perform these steps are encapsulated in the class
design. Each node object contains the functionality to insert itself into or
remove itself from the list.

For example, in this class, every node object has an insertAfter method. To
add a new node to a list, create the node object and then call its insertAfter
method:

nnew = NodeConstructor;
nnew.insertAfter(nt)

Because the node class defines the code that implements these operations,
this code 1is:

¢ Implemented in an optimal way by the class author

e Always up to date with the current version of the class

o Well tested

¢ Can automatically update old-versions of the objects when they are loaded

from MAT-files.

The object methods enforce the rules for how the nodes interact. This design
removes the responsibility for enforcing rules from the applications that use
the objects. It also means the application is less likely to generate errors in its
own implementation of the process.

Why Use Object-Oriented Design

Fostering Modularity

As you decompose a system into objects (car —> engine —> fuel system —>
oxygen sensor), you form modules around natural boundaries. These objects
provide interfaces by which they interact with other modules (which might be
other objects or functions). Often the data and operations behind the interface
are hidden from other modules to segregate implementation from interface.

Classes provide three levels of control over code modularity:

¢ Public — Any code can access this particular property or call this method.

® Protected — Only the object’s own methods and those of the object’s whose
class has been derived from this object’s class can access this property
or call this method.

® Private — Only the object’s own methods can access this property or call
this method.

Overloaded Functions and Operators

When you define a class, you can overload existing MATLAB functions to work
with your new object. For example, the MATLAB serial port class overloads
the fread function to read data from the device connected to the port
represented by this object. You can define various operations, such as equality
(eq) or addition (plus), for a class you have defined to represent your data.

Reduce Code Redundancy

Suppose your application requires a number of dialog windows to interact
with users. By defining a class containing all the common aspects of the
dialog windows, and then deriving the specific dialog classes from this base
class, you can:

® Reuse code that is common to all dialog window implementations

Reduce code testing effort due to common code

¢ Provide a common interface to dialog developers

Enforce a consistent look and feel

Apply global changes to all dialog windows more easily

1-15

1 Using Object-Oriented Design in MATLAB®

Learning More

See “Classes in the MATLAB Language” on page 2-2 to learn more about
writing object-oriented MATLAB programs.

1-16

Class Diagram Notation

Class Diagram Notation

The diagrams representing classes that appear in this documentation follow
the conventions described in the following legend.

1-17

1 Using Object-Oriented Design in MATLAB®

Concept Graphical representation Example
4) /hankAccoun{\
Object Properties
AccountNumber
AccountBalance
- J N J
Employee
Class Properties
Name
Address
Asset
is_a lr lr
Stock
FileReader FilelD
O—
O—
(aggregation)
has_a
Car Tire
(composition) g

1-18

MATLAB Classes Overview

¢ “Classes in the MATLAB Language” on page 2-2

¢ “Detailed Information and Examples” on page 2-8

® “Developing Classes — Typical Workflow” on page 2-11
* “Working with Objects in Functions” on page 2-18

¢ “Class to Represent Structured Data” on page 2-22

¢ “Class to Implement Linked Lists” on page 2-31

¢ “Class for Graphing Functions” on page 2-44

2 MATLAB® Classes Overview

2-2

Classes in the MATLAB Language

In this section...

“Classes” on page 2-2
“Some Basic Relationships” on page 2-4
“Introductory Examples” on page 2-6

“Learning Object-Oriented Programming” on page 2-7

Classes

In the MATLAB language, every value is assigned to a class. For example,
creating a variable with an assignment statement constructs a variable of
the appropriate class:

>> a = 7;

>> b = 'some string';

>> whos
Name Size Bytes Class
a 1x1 8 double
b 1x11 22 char

Basic commands like whos display the class of each value in the workspace.
This information helps MATLAB users recognize that some values are
characters and display as text while other values might be double, single,
or other types of numbers. Some variables can contain different classes

of values like cells.

User-Defined Classes

You can create your own MATLAB classes. For example, you could define a
class to represent polynomials. This class could define the operations typically
associated with MATLAB classes, like addition, subtraction, indexing,
displaying in the command window, and so on. However, these operations
would need to perform the equivalent of polynomial addition, polynomial
subtraction, and so on. For example, when you add two polynomaial objects:

p1 + p2

Classes in the MATLAB® Language

the plus operation would know how to add polynomial objects because the
polynomial class defines this operation.

When you define a class, you overload special MATLAB functions (plus.m for
the addition operator) that are called by the MATLAB runtime when those
operations are applied to an object of your class.

See “A Polynomial Class” on page 16-2 for an example that creates just such
a class.

MATLAB Classes — Key Terms

MATLAB classes use the following words to describe different parts of a class
definition and related concepts.

¢ (lass definition — Description of what is common to every instance of
a class.
® Properties — Data storage for class instances

¢ Methods — Special functions that implement operations that are usually
performed only on instances of the class

¢ Events — Messages that are defined by classes and broadcast by class
instances when some specific action occurs

® Attributes — Values that modify the behavior of properties, methods,
events, and classes

¢ Listeners — Objects that respond to a specific event by executing a callback
function when the event notice is broadcast

® Objects — Instances of classes, which contain actual data values stored in
the objects’ properties

® Subclasses — Classes that are derived from other classes and that inherit
the methods, properties, and events from those classes (subclasses facilitate
the reuse of code defined in the superclass from which they are derived).

® Superclasses — Classes that are used as a basis for the creation of more
specifically defined classes (i.e., subclasses).

e Packages — Folders that define a scope for class and function naming

2-3

2 MATLAB® Classes Overview

2-4

These are general descriptions of these components and concepts. This
documentation describes all of these components in detail.

Some Basic Relationships
This section discusses some of the basic concepts used by MATLAB classes.

Classes

A class is a definition that specifies certain characteristics that all instances
of the class share. These characteristics are determined by the properties,
methods, and events that define the class and the values of attributes that
modify the behavior of each of these class components. Class definitions
describe how objects of the class are created and destroyed, what data the
objects contain, and how you can manipulate this data.

Class Hierarchies

It sometimes makes sense to define a new class in terms of existing classes.
This enables you to reuse the designs and techniques in a new class that
represents a similar entity. You accomplish this reuse by creating a subclass.
A subclass defines objects that are a subset of those defined by the superclass.
A subclass is more specific than its superclass and might add new properties,
methods, and events to those inherited from the superclass.

Mathematical sets can help illustrate the relationships among classes. In the
following diagram, the set of Positive Integers is a subset of the set of Integers
and a subset of Positive numbers. All three sets are subsets of Real numbers,
which 1s a subset of All Numbers.

The definition of Positive Integers requires the additional specification that
members of the set be greater than zero. Positive Integers combine the
definitions from both Integers and Positives. The resulting subset is more
specific, and therefore more narrowly defined, than the supersets, but still
shares all the characteristics that define the supersets.

Classes in the MATLAB® Language

All
Numbers

Positive
Integers

The “is a” relationship is a good way to determine if it is appropriate to define
a particular subset in terms of existing supersets. For example, each of the
following statements makes senses:

® A Positive Integer is an Integer

® A Positive Integer is a Positive number

If the “is a” relationship holds, then it is likely you can define a new a class
from a class or classes that represent some more general case.

Reusing Solutions

Classes are usually organized into taxonomies to foster code reuse. For
example, if you define a class to implement an interface to the serial port of a
computer, it would probably be very similar to a class designed to implement
an interface to the parallel port. To reuse code, you could define a superclass
that contains everything that is common to the two types of ports, and then

2-5

2 MATLAB® Classes Overview

2-6

derive subclasses from the superclass in which you implement only what is
unique to each specific port. Then the subclasses would inherit all of the
common functionality from the superclass.

Objects

A class is like a template for the creation of a specific instance of the class.
This instance or object contains actual data for a particular entity that is
represented by the class. For example, an instance of a bank account class
is an object that represents a specific bank account, with an actual account
number and an actual balance. This object has built into it the ability to
perform operations defined by the class, such as making deposits to and
withdrawals from the account balance.

Objects are not just passive data containers. Objects actively manage the
data contained by allowing only certain operations to be performed, by hiding
data that does not need to be public, and by preventing external clients from
misusing data by performing operations for which the object was not designed.
Objects even control what happens when they are destroyed.

Encapsulating Information

An important aspect of objects is that you can write software that accesses
the information stored in the object via its properties and methods without
knowing anything about how that information is stored, or even whether it
1s stored or calculated when queried. The object isolates code that accesses
the object from the internal implementation of methods and properties. You
can define classes that hide both data and operations from any methods that
are not part of the class. You can then implement whatever interface is most
appropriate for the intended use.

Introductory Examples
The following examples illustrate some basic features of MATLAB classes.

“Developing Classes — Typical Workflow” on page 2-11 — applies
object-oriented thinking to a familiar concept to illustrate the process of
designing classes.

Classes in the MATLAB® Language

“Working with Objects in Functions” on page 2-18 — shows advantages of
using objects to define certain operations and how smoothly object fit in a
function-oriented workflow.

“Class to Represent Structured Data” on page 2-22 — shows the application of
object-oriented techniques to managing data.

“Class to Implement Linked Lists” on page 2-31 — using a handle class to
implement a doubly linked list.

Learning Object-Oriented Programming

The following references can help you develop a basic understanding of
object-oriented design and concepts.

e Shalloway, A., J. R. Trott, Design Patterns Explained A New Perspective on
Object-Oriented Design.. Boston, MA: Addison-Wesley 2002.

® Gamma, E., R. Helm, R. Johnson, J. Vlissides, Design Patterns Elements of
Reusable Object-Oriented Software. Boston, MA: Addison-Wesley 1995.

® Freeman, E., Elisabeth Freeman, Kathy Sierra, Bert Bates, Head First
Design Patterns. Sebastopol, CA 2004.

® See Wikipedia® :Object Oriented Programming

http://en.wikipedia.org/wiki/Object-oriented_programming

2 MATLAB® Classes Overview

Detailed Information and Examples

Rapid Access to Information

This section provides a gateway to both conceptual information and example

implementations. It enables you to scan the information available for broad

topics

Background Information and

Topic Discussion Code Examples
Attributes
(all) Atiribute Tables
Classes
List of all class member attributes: “Developing Classes — Typical
Attribute Tables Workflow” on page 2-11 for a simple
“Classes in the MATLAB Language” erample
on page 2-2 for an introduction “Class to Represent Structured Data”
to object-oriented programming on page 2-22
concepts. “Class to Implement Linked Lists” on
“User-Defined Classes” on page 4-2 | page 2-31
for an overview of classes features. “A Polynomial Class” on page 16-2
“A Simple Class Hierarchy” on page
17-2
“Containing Assets in a Portfolio” on
page 17-19
Attributes “Class Attributes” on page 4-6 for a

list of class attributes

”»

“Hierarchies of Classes — Concepts
on page 10-2 describes how classes
can be built on other classes

“A Simple Class Hierarchy” on page
17-2

Detailed Information and Examples

(Continued)
Background Information and
Topic Discussion Code Examples
Attributes
(all) Attribute Tables

“Creating Subclasses — Syntax and
Techniques” on page 10-7

“Modifying Superclass Methods and
Properties” on page 10-14

“Specializing the dlnode Class” on page
2-40

Kinds of classes

“Comparing Handle and Value
Classes” on page 5-2

“The Handle Superclass” on page
5-11 — a detailed description of the
abstract class.

“Class to Implement Linked Lists” on
page 2-31

Properties

“Defining Properties” on page 6-5 for
an overview of what properties are
and how to use them

“Property Definition Block” on page
6-5 shows how to specify initial
values

“Restricting Properties to Specific
Values” on page 2-25

Attributes

“Specifying Property Attributes”
on page 6-7 for a list of property
attributes

“Using a Dependent Property” on page
2-27

“Dynamic Properties — Adding
Properties to an Instance” on page
6-26

“Assigning Data to the Dynamic
Property” on page 6-28

Methods

“How to Use Methods” on page 7-2
for an overview of methods

Attributes

“Method Attributes” on page 7-5 for
a list of method attributes

2 MATLAB® Classes Overview

(Continued)

Background Information and

Topic Discussion Code Examples

Atiributes

(all) Attribute Tables
“Class Constructor Methods” on “Simplifying the Interface with a
page 7-16 for information about Constructor” on page 2-26
constructor methods
“Handle Class Destructor” on page
5-16
“Property Access Methods” on page | “Restricting Properties to Specific
6-14 Values” on page 2-25
“Implementing a Set/Get Interface
for Properties” on page 5-23

Events

“Events and Listeners — Concepts”
on page 9-11 for an overview of how
events work

“Events and Listeners — Syntax
and Techniques” on page 9-18 for
the syntax used to define events and
listeners

“Update Graphs Using Events and
Listeners” on page 9-34 for a complete
example that uses events and listeners,
including a property listener

2-10

Developing Classes — Typical Workflow

Developing Classes — Typical Workflow

In this section...

“Formulating a Class” on page 2-11
“Implementing the BankAccount Class” on page 2-13

“Implementing the AccountManager Class” on page 2-15

“Using the BankAccount Class” on page 2-16

Formulating a Class

This example discusses the design and implementation of a simple class. To
design a class that represents a bank account, first determine the elements of
data and the operations that form your abstraction of a bank account. For
example, a bank account has:

® An account number

®* An account balance

® A current status (open, closed, etc.)
You need to perform certain operations on a bank account:

¢ Deposit money

¢ Withdraw money

You might also want the bank account to send a notice if the balance is too
low and an attempt is made to withdraw money. When this event occurs, the
bank account can broadcast a notice to other entities that are designed to
listen for these notices, such as an account manager program. The account
manager program can take action in response to the event.

In this class, the status of all bank accounts is determined by an account
manager program that looks at the account balance and assigns one of three

values:

® open — Account balance is a positive value

2-11

2 MATLAB® Classes Overview

2-12

e overdrawn — Account balance is overdrawn, but by $200 or less.

® closed — Account balance is overdrawn by more than $200.

MATLAB classes store data in properties, implement operations with
methods, and support notifications with events and listeners. Therefore,
the bank account class needs to implement these components, which are
discussed in the following sections.

Class Data

The class needs to define these properties to store the account number,
account balance, and the account status:

® AccountNumber — MATLAB assigns a value to this property when you
create an instance of the class.

® AccountBalance — The class operation of depositing and withdrawing
money assigns values to this property.

® AccountStatus — MATLAB sets this property to an initial value when an
instance of the class is created. It is then changed by methods from the
AccountManager class whenever the value of the AccountBalance falls
below 0.

The first two properties contain information that only the class can change, so
the SetAccess attribute is set to private (only class methods can set these
values).

An external program sets the value of the AccountStatus property. This
program needs access to the property, so the property’s SetAccess attribute is
left as public (any code can access this property value).

Class Operations
There are three operations that the class must be able to perform, so there
needs to be three methods:

® deposit — Update the AccountBalance property when a deposit
transaction occurs

Developing Classes — Typical Workflow

® withdraw — Update the AccountBalance property when a withdrawal
transaction occurs

e BankAccount — Create an initialized instance of the class

Class Events

The account manager program changes the status of bank accounts having
negative balances. To implement this action, the BankAccount class triggers
an event when a withdrawal results in a negative balance. Therefore, the
triggering of the InsufficientsFunds event occurs from within the withdraw
method.

To define an event, specify a name within an events block. Trigger the event
by a call to the notify handle class method. Because InsufficientsFunds
is not a predefined event, you can name it with any string and trigger it
with any action.

Implementing the BankAccount Class

It makes sense for there to be only one set of data associated with any instance
of a BankAccount class. You would not want independent copies of the
object that could have, for example, different values for the account balance.
Therefore, the BankAccount class should be implemented as a handle class.
All copies of a given handle object refer to the same data.

Commented Example Code

You can display the code for this example in a popup window that contains
detailed comments and links to related sections of the documentation:
BankAccount class

AccountManager class

Open both class files in your editor by clicking this link:

Open in editor

2-13

2 MATLAB® Classes Overview

Class Definition

classdef BankAccount < handle
properties (Hidden)
AccountStatus = 'open';
end
% The following properties can be set only by class methods
properties (SetAccess = private)
AccountNumber
AccountBalance = 0;
end
% Define an event called InsufficientFunds
events
InsufficientFunds
end
methods
function BA = BankAccount (AccountNumber,InitialBalance)
BA.AccountNumber = AccountNumber;
BA.AccountBalance = InitialBalance;
% Calling a static method requires the class name
% addAccount registers the InsufficientFunds listener on this instance
AccountManager.addAccount (BA) ;
end
function deposit(BA,amt)
BA.AccountBalance = BA.AccountBalance + amt;
if BA.AccountBalance > 0
BA.AccountStatus = 'open';
end
end
function withdraw(BA,amt)
if (strcmp(BA.AccountStatus, 'closed')&& BA.AccountBalance < 0)
disp(['Account ',num2str(BA.AccountNumber),' has been closed.'])
return
end
newbal = BA.AccountBalance - amt;
BA.AccountBalance = newbal;
% If a withdrawal results in a negative balance,
% trigger the InsufficientFunds event using notify
if newbal < 0
notify(BA, 'InsufficientFunds"')

2-14

Developing Classes — Typical Workflow

end
end % withdraw
end % methods
end % classdef

Implementing the AccountManager Class

The AccountManager class provides two methods that implement and
register a listener for the InsufficientsFunds event, which is defined for
all BankAccount objects. The BankAccount class constructor method calls
addAccount to register the listener for the instance being created.

Class Definition

classdef AccountManager
methods (Static)
function assignStatus(BA)
if BA.AccountBalance < 0O
if BA.AccountBalance < -200
BA.AccountStatus = 'closed';
else
BA.AccountStatus = 'overdrawn';
end
end
end
function addAccount (BA)
% Call the handle addlistener method
% Object BA is a handle class
addlistener(BA, 'InsufficientFunds',
@(src, evnt)AccountManager.assignStatus(src));
end
end
end

Note that the AccountManager class is never instantiated. It serves as a
container for the event listener used by all BankAccount objects.

2-15

2 MATLAB® Classes Overview

2-16

Using the BankAccount Class

The BankAccount class, while overly simple, demonstrates how MATLAB
classes behave. For example, create a BankAccount object with a serial
number and an initial deposit of $500:

BA = BankAccount(1234567,500);
BA.AccountNumber
ans =
1234567
BA.AccountBalance
ans =
500
BA.AccountStatus
ans =
open

Now suppose you make a withdrawal of $600, which results in a negative
account balance:

BA.withdraw(600)
BA.AccountBalance
ans =

-100
BA.AccountStatus
ans =
overdrawn

When the $600 withdrawal occurred, the InsufficientsFunds event
was triggered. Because the AccountBalance is not less than —$200, the
AccountStatus was set to overdrawn:

BA.withdraw(200)
BA.AccountBalance
ans =

-300
BA.AccountStatus
ans =
closed

Now the AccountStatus has been set to closed by the listener and further
attempts to make withdrawals are blocked:

Developing Classes — Typical Workflow

BA.withdraw(100)
Account 1234567 has been closed

If the AccountBalance is returned to a positive value by a deposit, then the
AccountStatus is returned to open and withdrawals are allowed again:

BA.deposit(700)
BA.AccountStatus
ans =
open
BA.withdraw(100)
BA.AccountBalance
ans =

300

2-17

2 MATLAB® Classes Overview

2-18

Working with Objects in Functions

In this section...

“Flexible Workflow” on page 2-18
“Performing a Task with an Object” on page 2-18

“Using Object Functionality” on page 2-20

Flexible Workflow

The MATLAB language does not require you to define classes for all the code
you write. You can use objects along with ordinary functions. This section
illustrates the use of an object that implements the basic task of writing text
to a file. Then this object is used in a function to write a text file template
for a class definition.

Performing a Task with an Object

One of the advantages of defining a class instead of simply writing a function
to perform a task is that classes provide better control over related data. For
example, consider the task of writing data to a file. It involves the following
steps:

® Opening a file for writing and saving the file identifier

e Using the file identifier to write data to the file
e Using the file identifier to close the file

The Filewriter Class
This simple class definition illustrates how you might create a class to write

text to a file. It shows how you can use a class definition to advantage by:
¢ Hiding private data — The caller does not need to manage the file identifier.

¢ Ensuring only one file identifier is in use at any time — Copies of handle
objects reference the same file identifier as the original.

¢ Providing automatic file closing when the object is deleted — the object’s
delete method takes care of cleanup without needing to be called explicitly.

Working with Obijects in Functions

This class is derived from the handle class so that a Filewriter object is
a handle object. All copies of handle objects reference the same internal
data so there will be only one file identifier in use, even if you make copies
of the object. Also, handle classes define a delete method which is called
automatically when a handle object is destroyed. This example overrides
the delete method to close the file before the file identifier is lost and the
file is left open.

classdef Filewriter < handle
% Property data is private to the class
properties (SetAccess = private, GetAccess = private)
FileID
end % properties

methods
% Construct an object and
% save the file ID
function obj = Filewriter(filename)
obj.FileID = fopen(filename, 'a');
end

function writeToFile(obj,text_str)
fprintf(obj.FileID, 'Ss\n',text_str);

end

% Delete methods are always called before a object

% of the class is destroyed

function delete(obj)
fclose(obj.FilelD);

end

end % methods
end % class

Using a Filewriter Object
Note that the user provides a file name to create a Filewriter object, and

then uses the class writeToFile method to write text to the file. The following

statements create a file named mynewclass.m and write one line to it. The
clear all command deletes the Filewriter object, which causes its delete
method to be called and the file is closed.

>> fw = Filewriter('mynewclass.m');

2-19

2 MATLAB® Classes Overview

2-20

>> fw.writeToFile('classdef mynewclass < handle')
>> clear fw
>> type mynewclass

classdef mynewclass < handle

Using Object Functionality

Filewriter objects provide functionality that you can use from functions
and within other classes. You can create an ordinary function that uses this
object, as the writeClassFile function does below.

This example creates only one simple class template, but another version
might accept a cell array of attribute name/value pairs, method names, and
SO on.

function writeClassFile(classname,superclass)
% Use a Filewriter object to write text to a file
fw = Filewriter([classname '.m']);
if nargin > 1
fw.writeToFile(['classdef ' classname ' < ' superclass])
else
fw.writeToFile(['classdef ' classname])
end
fw.writeToFile
fw.writeToFile
fw.writeToFile
fw.writeToFile(' ')
fw.writeToFile(' methods ')

(' properties ')
(
(
(
(
fw.writeToFile([' function obj = ' classname '()'])
('
(
(
(
e

)

' end % properties')

fw.writeToFile ")

fw.writeToFile(' end')

fw.writeToFile(' end % methods')

fw.writeToFile('end % classdef')

delete(fw) % Delete object, which closes file
end

To create a class file template, call writeClassFile with the name of the new
class and its superclass. Use the type command to display the contents of
the file:

Working with Obijects in Functions

>> writeClassFile('myNewClass', 'handle"')

>> type myNewClass

classdef myNewClass < handle

end

More Information on These Techniques

properties
end % properties

methods
function obj = myNewClass()

end
end % methods
% classdef

“The Handle Superclass” on page 5-11

“Handle Class Destructor” on page 5-16

2-21

2 MATLAB® Classes Overview

2-22

Class to Represent Structured Data

In this section...

“Commented Example Code” on page 2-22

“Objects As Data Structures” on page 2-22

“Structure of the Data” on page 2-23

“The TensileData Class” on page 2-23

“Creating an Instance and Assigning Data” on page 2-24
“Restricting Properties to Specific Values” on page 2-25
“Simplifying the Interface with a Constructor” on page 2-26
“Using a Dependent Property” on page 2-27

“Displaying TensileData Objects” on page 2-28

“Method to Plot Stress vs. Strain” on page 2-29

Commented Example Code

Open class code in a popup window — Use this link if you want to see the final
code for this class annotated with links to descriptive sections.

Open class definition file in the MATLAB editor. — Use this link if you want
to save and modify your version of the class.

To use the class, create a folder named @TensileData and save
TensileData.m to this folder. The parent folder of @TensileData must be
on the MATLAB path.

Objects As Data Structures

This example defines a class for storing data with a specific structure. Using
a consistent structure for data storage makes it easier to create functions that
operate on the data. While a MATLAB struct with field names describing
the particular data element is a useful way to organize data, the use of a class
to define both the data storage (properties) and operations you can perform on
that data (methods) provides advantages, as this example illustrates.

Class to Represent Structured Data

Concepts on Which This Example Is Based.

For purposes of this example, the data represents tensile stress/strain
measurements, which are used to calculate the elastic modulus of various
materials. In simple terms, stress is the force applied to a material and
strain is the resulting deformation. Their ratio defines a characteristic of
the material. While this is an over simplification of the process, it suffices
for this example.

Structure of the Data
The following table describes the structure of the data.

Data Description

Material Character string identifying the type of
material tested

SampleNumber Number of a particular test sample

Stress Vector of doubles representing the stress

applied to the sample during the test.

Strain Vector of doubles representing the strain at
the corresponding values of the applied stress.

Modulus Double defining an elastic modulus of the
material under test, which is calculated from
the stress and strain data

The TensileData Class

This class is designed to store data, so it defines a property for each of the
data elements. The following class block defines five properties and specifies
their initial values according to the type of data each will contain. Defining
initial values is not required, but can be useful if a property value is not
assigned during object creation.

Note that this example begins with a simple implementation of the class

and builds on this implementation to illustrate how features enhance the
usefulness of the class.

2-23

2 MATLAB® Classes Overview

2-24

classdef TensileData
properties
Material = '';
SampleNumber = 0;
Stress
Strain
Modulus = 0;
end
end

Creating an Instance and Assigning Data

Create a TensileData object and assign data to it with the following
statements:

td = TensileData;

td.Material = 'Carbon Steel';
td.SampleNumber = 001;

td.Stress = [2e4 4e4 6e4 8e4];

td.Strain = [.12 .20 .31 .40];
td.Modulus = mean(td.Stress./td.Strain);

Advantages of a Class vs. a Structure Array
Treat the TensileData object (td in the statements above) much as you would
any MATLAB structure array. However, defining a specialized data structure

as a class has advantages over using a general-purpose data structure, like a
MATLAB struct:

e Users cannot accidentally misspell a field name without getting an error.
For example, typing the following:

>>td.Modulis =
would simply add a new field to a structure array, but returns an error
when td is an instance of the TensileData class.

® A class is easy to reuse. Once you have defined the class, you can easily
extend it with subclasses that add new properties.

Class to Represent Structured Data

® A class is easy to identify. A class has a name so that you can identify
objects with the whos and class functions and the Workspace browser. The
class name makes it easy to refer to records with a meaningful name.

e A class can validate individual field values when assigned, including class
or value.

® A class can restrict access to fields, for example, allowing a particular field
to be read, but not changed.

The next section describes how to add type checking and how to restrict
property access in the TensileData class.

Restricting Properties to Specific Values

Restrict the values to which a property can be set by defining a property set
access method. MATLAB software then calls this function whenever a value
1s set for a property, including when creating the object.

Defining the Material Property Set Function

The property set method restricts the assignment of the Material property to
one of the following strings: aluminum, stainless steel, or carbon steel.

Add this function definition to the methods block.

classdef TensileData
properties
Material = 'carbon steel';
SampleNumber = 0;
Stress
Strain
Modulus
end % properties
methods
function obj = set.Material(obj,material)
if ~(strcmpi(material,'aluminum') ||...
strcmpi(material, 'stainless steel') |]...
strcmpi(material, 'carbon steel'))
error('Material must be aluminum, stainless steel, or carbon steel')
end

2-25

2 MATLAB® Classes Overview

obj.Material = material;
end % set.Material
end% methods
end% classdef

When an attempt is made to set the Material property, the MATLAB runtime
passes the object and the specified value to the property’s set.Material
function (the obj and the material input arguments). In this case, if the
value does not match the acceptable values, the function returns an error.
Otherwise, the specified value is used to set the property. Only the set
method can directly access the property in the object (without calling the
property set method).

For example:

td = TensileData;

td.Material = 'composite';

Error using TensileData/set.Material

Material must be aluminum, stainless steel, or carbon steel

Simplifying the Interface with a Constructor

You can simplify the interface to the TensileData class by adding a
constructor function that:

® Enables you to pass the data as arguments to the constructor

® Assigns values to properties

The constructor is a method having the same name as the class.

function td = TensileData(material,samplenum,stress,strain)
if nargin > 0 % Support calling with 0 arguments
td.Material = material;
td.SampleNumber = samplenum;
td.Stress = stress;
td.Strain = strain;
end
end % TensileData

2-26

Class to Represent Structured Data

Using the constructor, you can create a TensileData object fully populated
with data using the following statement:

td = TensileData('carbon steel',1,[2e4 4e4 6e4 8e4],[.12 .20 .31 .40]);

Calculating Modulus

Note that the constructor function does not have an input argument for the
value of the Modulus property. This is because the value of the Modulus:

¢ [s easy to calculate from the Stress and Strain property values

® Needs to change if the value of the Stress or Strain property changes

Therefore, it is better to calculate the value of the Modulus property only when
its value is requested. You can do this with a property get access method,
which is described in the next section.

Using a Dependent Property

TensileData objects do not store the value of the Modulus property; instead
this value is calculated whenever it is requested. This approach enables you
to update the Stress and Strain property data at any time without having
to recalculate the value of the Modulus property.

Modulus Property Get Method

The Modulus property depends on Stress and Strain, so its Dependent
attribute is set to logical true. To do this, create another properties block to
set the Dependent attribute.

Also, because the get.Modulus method calculates and returns the value of
the Modulus property, you should set the property’s SetAccess attribute
to private

properties (Dependent = true, SetAccess = private)
Modulus
end

Define the property’s get method in a methods block.

2-27

2 MATLAB® Classes Overview

2-28

methods
function modulus = get.Modulus(obj)
ind = find(obj.Strain > 0); % Find nonzero strain
modulus = mean(obj.Stress(ind)./obj.Strain(ind));
end % Modulus get method
end % methods

This function simply calculates the average ratio of stress to strain data after
eliminating zeros in the denominator data.

The MATLAB runtime calls the get.Modulus method when the property is
queried. For example,

td = TensileData('carbon steel',1,[2e4 4e4 6e4 8e4],[.12 .20 .31 .40]);
td.Modulus
ans =

1.9005e+005

Modulus Property Set Method

To set the value of a Dependent property, the class must implement a
property set method. There is no need to enable explicit setting of the
Modulus property, but a set method enables you to provide a customized error
message. The Modulus set method references the current property value
and then returns an error:

methods
function obj = set.Modulus(obj,~)
fprintf('%s%d\n', 'Modulus is: ',obj.Modulus)
error('You cannot set Modulus explicitly');
end % Modulus get function

Displaying TensileData Objects

The TensileData class can implement a disp method that controls what is
displayed when an object of this class is shown on the command line (for
example, by an assignment statement not terminated by a semicolon).

The TensileData disp method displays the value of the Material,
SampleNumber, and Modulus properties. It does not display the Stress and

Class to Represent Structured Data

Strain property data since these properties contain raw data that is not
easily viewed in the command window. The plot method (described in the
next section) provides a better way to display stress and strain data.

The disp method uses fprintf to display formatted text in the command
window:

methods
function disp(td)
fprintf(1, 'Material: %s\nSample Number: %g\nModulus: %1.5g\n',...
td.Material,td.SampleNumber,td.Modulus);
end % disp
end % methods

Method to Plot Stress vs. Strain

It is useful to view a graph of the stress/strain data to determine the behavior
of the material over a range of applied tension. A TensileData object contains
the stress and strain data so it is useful to define a class method that is
designed to plot this data.

The TensileData plot method creates a linear graph of the stress versus
strain data and adds a title and axis labels to produce a standardized graph
for the tensile data records:

function plot(td,varargin)
plot(td.Strain,td.Stress,varargin{:})
title(['Stress/Strain plot for Sample',...
num2str(td.SampleNumber)])
ylabel('Stress (psi)')
xlabel('Strain %")
end % plot

The first argument to this method is a TensileData object, which contains
the data and is used by the MATLAB runtime to dispatch to the TensileData
class plot method and not the built-in plot function.

The variable list of arguments that follow are passed directly to the built-in
plot function from within the method. This enables the TensileData plot
method to behave like the built-in plot function, which allows you to pass
line specifier arguments or property name/value pairs along with the data.

2-29

2 MATLAB® Classes Overview

For example, plotting the following object:

td = TensileData('carbon steel',1,[2e4 4e4 6e4d
8e4]1,[.12 .20 .31 .40]);
plot(td,'-+g', 'LineWidth',2)

produces this graph.

<10t Stress/Strain plot for Sample 1
B T T T T T

Stress (psi)

0.15 0.2 0.25 03 0.35 0.4 0.45
Strain %

T

2-30

Class to Implement Linked Lists

Class to Implement Linked Lists

In this section...

“Commented Example Code” on page 2-31
“Important Concepts Demonstrated” on page 2-31
“dlnode Class Design” on page 2-32

“Creating Doubly Linked Lists” on page 2-33

“Why a Handle Class for Linked Lists?” on page 2-34
“Defining the dlnode Class” on page 2-35

“Specializing the dlnode Class” on page 2-40

Commented Example Code

Open class code in a popup window — Use this link if you want to see the code
for this class annotated with links to descriptive sections.

Open class definition file in the MATLAB editor. — Use this link if you want
to save and modify your version of the class.

To use the class, create a folder named @d1lnode and save dlnode.m to
this folder. The parent folder of @d1node must be on the MATLAB path.
Alternatively, save dlnode.m to a path folder.

Important Concepts Demonstrated

This section discusses concepts that are important in object-oriented design,
and which are illustrated in this example.

Encapsulation

This example shows how classes encapsulate the internal structure used to
implement the class design (a doubly linked lists). Encapsulation conceals the
internal workings of the class from other code and provides a stable interface
to programs that use this class. It also prevents client code from misusing the
class because only class methods can access certain class data.

2-31

2 MATLAB® Classes Overview

2-32

Class methods define the operations that you can perform on nodes of this
class. These methods hide the potentially confusing process of inserting and
removing nodes, while at the same time providing an interface that performs
operations simply:

® (Creating a node by passing the constructor a data value

® Inserting nodes with respect to other nodes in the list (before or after)

® Removing nodes from the list

See “Defining the dlnode Class” on page 2-35 for the implementation details.

Handle Class Behavior

This example shows an application of a handle class and explains why this
is the best choice for the class. See “Why a Handle Class for Linked Lists?”
on page 2-34.

dinode Class Design

This example defines a class for creating the nodes of doubly linked lists
in which each node contains:

® Data array

¢ Link to the next node

¢ Link to the previous node
Each node has methods that enables the node to be:

¢ Disconnected from a linked list
¢ Connected before a specified node in a linked list

¢ Connected after a specific node in a linked list

Class Properties

The dlnode class implements each node as a handle object with three
properties:

Class to Implement Linked Lists

® Data — Contains the data for this node

® Next — Contains the handle of the next node in the list (SetAccess =
private)

e Prev — Contains the handle of the previous node in the list (SetAccess
= private)

This diagram shows a three-node list n1, n2, and n3. It also shows how the
nodes reference the next and previous nodes.

4\ n3
Proper/ Proper/ Properties
Next Next Next

Prev

Prev Prev

n2.Prev n2 n2.Next

Class Methods

The dlnode class implements the following methods:

® dlnode — Constructs a node and assigns the value passed as input to the
Data property

e insertAfter — Inserts this node after the specified node

e insertBefore — Inserts this node before the specified node

® disconnect — Removes this node from the list

® disp — Overloads default disp function so that the Data property displays
on the command line for scalar objects and the dimension of the array
displays for object arrays

® delete — Removes this node from the list before it is destroyed

Creating Doubly Linked Lists

Create a node by passing the node’s data to the dlnode class constructor. For
example, these statements create three nodes with sequential integer data
just for simplicity:

2-33

2 MATLAB® Classes Overview

ni=dlnode(1);
n2=dlnode(2);
n3=dlnode(3);

Build these nodes into a doubly linked list using the class methods:

n2.insertAfter(ni)
n3.insertAfter(n2)

Now the three nodes are linked. The dlnode disp method returns the data for
the node referred to:

n1.Next % Points to n2

ans =

Doubly-1linked 1list node with data:
2

n2.Next.Prev % Points back to n2

ans =

Doubly-1linked 1list node with data:
2

n1.Next.Next % Points to n3

ans =

Doubly-1linked list node with data:
3

n3.Prev.Prev % Points to ni

ans =

Doubly-1linked 1list node with data:
1

Why a Handle Class for Linked Lists?

Each node is unique in that no two nodes can be previous to or next to the
same node. Suppose a node object, node, contains in its Next property the
handle of the next node object, node.Next. Similarly, the Prev property
contains the handle of the previous node, node.Prev. Using the three-node
linked list defined in the previous section, you can demonstrate that the
following statements are true:

n1.Next == n2
n2.Prev == ni

2-34

Class to Implement Linked Lists

Now suppose you assign n2 to x:

X = n2;

The following two equalities are then true:

X == n1.Next
X.Prev == ni

But each instance of a node is unique so there is only one node in the list
that can satisfy the conditions of being equal to n1.Next and having a Prev
property that contains a handle to n1. Therefore, x must point to the same
node as n2.

This means there has to be a way for multiple variables to refer to the same
object. The MATLAB handle class provides a means for both x and n2 to refer
to the same node. All instances of the handle class are handles that exhibit
the copy behavior described previously.

Notice that the handle class defines the eq method (use methods ('handle')
to list the handle class methods), which enables the use of the == operator
with all handle objects.

See “Comparing Handle and Value Classes” on page 5-2 for more information
on kinds of MATLAB classes.

See “The Handle Superclass” on page 5-11 for more information about the
handle class.

Defining the dinode Class

The following examples use this doubly linked list (see “Commented Example
Code” on page 2-31 before using this class):

ni = dlnode(1);
n2 = dlnode(2);
n3 = dlnode(3);

n2.insertAfter(nt)
n3.insertAfter(n2)

2-35

2 MATLAB® Classes Overview

2-36

Class Properties

The d1lnode class is itself a handle class because it is derived from the handle
class. Note that only class methods can set the Next and Prev properties
(SetAccess = private). Using private set access prevents client code from
performing any incorrect operation with these properties. The dlnode class
defines methods that perform all the operations that are allowed on these
nodes. Here are the property definition blocks:

classdef dlnode < handle

properties
Data

end

properties (SetAccess = private)
Next
Prev

end

Creating a Node Object

To create a node object, you need to specify only the node’s data.

function node = dlnode(Data)
if nargin > 0
node.Data = Data;
end
end

When you add the node to a list, the class methods that perform the insertion
set the Next and Prev properties. See “Inserting Nodes” on page 2-38.

Disconnecting Nodes

The disconnect method removes a node from a list and repairs the list by
reconnecting the appropriate nodes. The insertBefore and insertAfter
methods always call disconnect on the node to insert before attempting to
connect it to a linked list. This ensures the node is in a known state before
assigning it to the Next or Prev property:

function disconnect(node)
if ~isscalar(node)

Class to Implement Linked Lists

error('Nodes must be scalar')

end

prevNode node.Prev;

nextNode = node.Next;

if ~isempty(prevNode)
prevNode.Next = nextNode;

end

if ~isempty(nextNode)
nextNode.Prev = prevNode;

end

node.Next = [];

node.Prev [1;

end

For example, suppose you remove n2 from the three-node list discussed above
(n1 n2 n3):

n2.disconnect;

:>//+» n1 n2
Properties Properties

Next Next
Prev Prev

N

Disconnect the nodes

n3

Properties

disconnect removes n2 from the list and repairs the list with the following
steps:

ni n2.Prev;

n3 n2.Next;

if n1 exists, then
ni.Next = n3;

if n3 exists, then
n3.Prev = ni

2-37

2 MATLAB® Classes Overview

Now the list is rejoined because n1 connects to n3 and n3 connects to n1. The
final step is to ensure that n2.Next and n2.Prev are both empty (i.e., n2
1s not connected):

% These properties have private SetAccess

% so they can be set only within class methods
n2.Next = [];

n2.Prev [1;

Inserting Nodes

There are two methods for inserting nodes into the list—insertAfter and
insertBefore. These methods perform similar operations, so this section
describes only insertAfter in detail.

methods

function insertAfter(newNode,nodeBefore)
disconnect(newNode) ;
newNode.Next = nodeBefore.Next;
newNode.Prev = nodeBefore;
if ~isempty(nodeBefore.Next)

nodeBefore.Next.Prev = newNode;

end
nodeBefore.Next = newNode;

end

How insertAfter Works. First insertAfter calls the disconnect method
to ensure that the new node is not connected to any other nodes. Then, it
assigns the newNode Next and Prev properties to the handles of the nodes that
are after and before the newNode location in the list.

For example, suppose you want to insert a new node, nnew, after an existing
node, n1, in a list containing n1 n2.

First, create nnew:

nnew = dlnode(rand(3));

Next, call insertAfter to insert nnew into the list after n1:

nnew.insertAfter(nt)

2-38

Class to Implement Linked Lists

The insertAfter method performs the following steps to insert nnew in the
list between n1 and n2:

% ni1.Next is currently n2, set nnew.Next to n1.Next (which is n2)
nnew.Next = ni.Next;

o°

nnew.Prev must be set to ni
nnew.Prev = ni;

o°

if n1.Next is not empty, then

% n1.Next is still n2, so ni1.Next.Prev is n2.Prev, which is set to nnew
n1.Next.Prev = nnew;

% n1.Next is now set to nnew

n1.Next = nnew;

= ni ~ n2 -
I
‘ PropeM
Next

Prev

n4
Properties
Next /
l Prev

Properties

Next
Prev

{

Newly inserted node

Displaying a Node on the Command Line

All objects call a default disp function, which displays information about the
object on the command line (unless display is suppressed with a semicolon).
The default disp function is not useful in this case because the Next and Prev
properties contain other node objects. Therefore, the dlnode class overloads
the default disp function by implementing its own disp class method. This
disp method displays only a text message and the value of the Data property,
when used with scalar objects, and array dimensions when used with object
arrays.

function disp(node)
% DISP Display a link node
if (isscalar(node))
disp('Doubly-linked list node with data:')
disp(node.Data)
else
% If node is an object array, display dimensions

2-39

2 MATLAB® Classes Overview

2-40

dims = size(node);
ndims = length(dims);
% Counting down in for loop avoids need to preallocate dimcell
for k = ndims-1:-1:1
dimcell{k} = [num2str(dims(k)) 'x'];
end
dimstr = [dimcell{:} num2str(dims(ndims))];
disp([dimstr ' array of doubly-linked list nodes']);
end
end

Deleting a Node Object

MATLAB destroys a handle object when you reassign or delete its variable

or when there are no longer any references to the object (see “Handle Class

Destructor” on page 5-16 for more information). When you define a delete

method for a handle class, MATLAB calls this method before destroying the
object.

The dlnode class defines a delete method because each dlnode object is a
node in a doubly linked list. If a node object is going to be destroyed, the
delete method must disconnect the node and repair the list before allowing
MATLAB to destroy the node.

The disconnect method already performs the necessary steps, so the delete
method can simply call disconnect:

function delete(node)
disconnect(node);
end

Specializing the dinode Class

The dlnode class implements a doubly linked list and provides a convenient
starting point for creating more specialized types of linked lists. For example,
suppose you want to create a list in which each node has a name.

Rather than copying the code used to implement the dlnode class, and then
expanding upon it, you can derive a new class from dlnode (i.e., subclass
dlnode) to create a class that has all the features of dlnode and more. And
because d1lnode is a handle class, this new class is a handle class too.

Class to Implement Linked Lists

NamedNode Class Definition

Open class definition file in the MATLAB editor. — Use this link if you want
to save and modify your version of the class.

To use the class, create a folder named @NamedNode and save NamedNode.m to
this folder. The parent folder of @NamedNode .m must be on the MATLAB path.
Alternatively, save NamedNode .m to a path folder.

The following class definition shows how to derive the NamedNode class from
the dlnode class:

classdef NamedNode < dlnode
properties
Name = ''; % property to contain node name
end
methods
function n = NamedNode (name,data)
if nargin == % allow for the no argument case
name = '';
data = [];
end
n = n@dlnode(data); % Initialize a dlnode object
n.Name = name;
end
function disp(node) % Extend the dlnode disp method
if (isscalar(node))

disp(['Node Name: ' node.Name])
disp@dlnode(node); % Call dlnode disp method
else

disp@dlnode(node);
end
end
end % methods
end % classdef

The NamedNode class adds a Name property to store the node name and extends
the disp method defined in the dlnode class.

The constructor calls the class constructor for the dlnode class, and then
assigns a value to the Name property. The NamedNode class defines default

2-41

2 MATLAB® Classes Overview

values for the properties for cases when MATLAB calls the constructor with
no arguments.

See “Basic Structure of Constructor Methods” on page 7-23 for more
information on defining class constructor methods.

Using NamedNode to Create a Doubly Linked List

Use the NamedNode class like the d1node class, except you specify a name
for each node object. For example:

=}
—_
-
-~

1l

NamedNode ('First Node',100);
NamedNode ('Second Node',200);
NamedNode ('Third Node',300)

N
1l

)

S
—_
w
-

1l

Now use the insert methods inherited from dlnode to build the list:

n(2).insertAfter(n(1))
n(3).insertAfter(n(2))

A single node displays its name and data when you query its properties:

>> n(1).Next

ans =

Node Name: Second Node

Doubly-1linked 1list node with data:
200

>> n(1).Next.Next

ans =

Node Name: Third Node

Doubly-1linked 1list node with data:
300

>> n(3).Prev.Prev

ans =

Node Name: First Node

Doubly-1linked list node with data:
100

If you display an array of nodes, the NamedNode disp method displays only
the dimensions of the array:

2-42

Class to Implement Linked Lists

>> n
n:
1x3 array of doubly-linked list nodes

2-43

2 MATLAB® Classes Overview

2-44

Class for Graphing Functions

In this section...

“Commented Example Code” on page 2-44
“Class Definition Block” on page 2-44
“Using the topo Class” on page 2-46
“Behavior of the Handle Class” on page 2-47

The class block is the code that starts with the classdef key word and
terminates with the end key word. The following example illustrated a simple
class definition that uses:

¢ Handle class
® Property set and get functions

¢ Use of a delete method for the handle object

e Static method syntax

Commented Example Code

You can display this class definition in a separate window that contains links
to related sections in the documentations by clicking this link:

Example with links

Open class definition file in the MATLAB editor. — Use this link if you want
to save and modify your own version of the class.

Class Definition Block

The following code defines a class called topo. It is derived from handle so it
is a handle class, which means it references the data it contains. See “Using
the topo Class” on page 2-46 for information on how this class behaves.

classdef topo < handle
% topo is a subclass of handle
properties
FigHandle % Store figure handle

Class for Graphing Functions

FofXY % function handle
Lm = [-2*pi 2*pi]; % Initial limits
end % properties

properties (Dependent, SetAccess = private)
Data
end % properties Dependent = true, SetAccess = private

methods
function obj = topo(fnc,limits)
% Constructor assigns property values
obj.FofXY = fnc;
obj.Lm = limits;
end % topo

function set.Lm(obj,1lim)
% Lm property set function

if ~(lim(1) < 1lim(2))

error('Limits must be monotonically increasing')
else
obj.Lm = 1im;

end

end % set.Lm

function data = get.Data(obj)
% get function calculates Data
% Use class name to call static method
[x,y] = topo.grid(obj.Lm);
matrix = obj.FofXY(x,y);
data.X X;
data.Y v;
data.Matrix = matrix;% Return value of property

end % get.Data

function surflight(obj)
% Graph function as surface
obj.FigHandle = figure;
surfc(obj.Data.X,obj.Data.Y,obj.Data.Matrix, ...
'FaceColor',[.8 .8 0], 'EdgeColor',[0 .2 0],...
'FaceLighting', 'phong');

2-45

MATLAB® Classes Overview

2-46

camlight left; material shiny; grid off
colormap copper
end % surflight method

function delete(obj)
% Delete the figure
h = obj.FigHandle;
if ishandle(h)
delete(h);
else
return
end
end % delete
end % methods

methods (Static = true) % Define static method

function [x,y] = grid(lim)
inc = (1im(2)-1im(1))/35;
[x,y] = meshgrid(lim(1):inc:1im(2));

end % grid
end % methods Static = true
end % topo class

Using the topo Class

See “Commented Example Code” on page 2-44 for information on using this
class.

This class is designed to display a combination surface/contour graph of
mathematical functions of two variables evaluated on a rectangular domain of
x and y. For example, any of the following functions can be evaluated over
the specified domain (note that x and y have the same range of values in this
example just for simplicity).

X.*exp(-x.72 - y."2); [-2 2]
sin(x).*sin(y); [-2*pi 2*pi]
sqrt(x.”2 + y."2); [-2*pi 2*pi]

To create an instance of the class, passing a function handle and a vector of
limits to the constructor. The easiest way to create a function handle for these
functions is to use an anonymous function:

Class for Graphing Functions

tobj = topo(@(x,y) Xx.*exp(-x."2-y."2),[-2 2]);

The class surflight method uses the object to create a graph of the function.
The actual data required to create the graph is not stored. When the
surflight method accesses the Data property, the property’s get function
performs the evaluation and returns the data in the Data property structure
fields. This data is then plotted. The advantage of not storing the data is
the reduced size of the object.

Behavior of the Handle Class

The topo class is defined as a handle class. This means that instances of this
class are handle objects that reference the underlying data store created by
constructing the object. For example, suppose you create an instance of the
class and create a copy of the object:

tobj = topo(@(x,y) Xx.*exp(-x."2-y."2),[-2 2]);
a = tobj;
surflight(a) % Call class method to create a graph

Now suppose you change the FofXY property so that it contains a function
handle that points to another function:

2-47

2 MATLAB® Classes Overview

2-48

tobj.FofXY = @(x,y) y.*exp(-x."2-y.”2); % now multiply
exp by y instead of x
surflight(a)

Because a is a copy of the handle object tobj, changes to the data referenced
by tobj also change the data referenced by a.

How a Value Class Differs

If topo were a value class, the objects tobj and a would not share data; each
would have its own copy of the property values.

Class Definition—Syntax
Reference

e “Class Files” on page 3-2

e “Class Components” on page 3-5

e “Classdef Block” on page 3-8

® “Properties” on page 3-10

¢ “Methods and Functions” on page 3-15

e “KEvents and Listeners” on page 3-21

e “Specifying Attributes” on page 3-23

e “Calling Superclass Methods on Subclass Objects” on page 3-26
* “Representative Class Code” on page 3-29

e “MATLAB Code Analyzer Warnings” on page 3-31

® “Objects In Switch Statements” on page 3-34

e “Using the Editor and Debugger with Classes” on page 3-42
¢ “Modifying and Reloading Classes” on page 3-43

¢ “Compatibility with Previous Versions ” on page 3-46

¢ “Comparing MATLAB with Other OO Languages” on page 3-50

3 Class Definition—Syntax Reference

Class Files

In this section...

“Options for Class Folders” on page 3-2
“Grouping Classes with Package Folders ” on page 3-3

“More Information on Class Folders” on page 3-4

Options for Class Folders
There are two basic ways to specify classes with respect to folders:

® Creating a single, self-contained class definition file in a folder on the
MATLAB path.

® Distributing a class definition to multiple files in an @ folder inside a
path folder.

Creating a Single, Self-Contained Class Definition File

Create a single, self-contained class definition file in a folder on the
MATLAB® path. The name of the file must match the class (and constructor)
name and must have the .m extension. Define the class entirely in this file.
You can put other single-file classes in this folder.

The following diagram shows an example of this folder organization.
pathfolder is a folder on the MATLAB path.

pathfolder
ClassNameA.m Contains classdef and methods for ClassNameA
ClassNameB.m Contains classdef and methods for ClassNameB
ClassNameC.m Contains classdef and methods for ClassNameC

ordinaryFunction.m Afunction on the path

See “Methods in Separate Files” on page 7-8 for more information on using
multiple files to define classes.

3-2

Class Files

Distributing the Class Definition to Mulitple Files

If you use multiple files to define a class, put all the class-definition files
(the file containing the classdef and all class method files) in a single
@ClassName folder. That @-folder must be inside a folder that is on the
MATLAB path. You can define only one class in an @-folder.

pathfolder
@ClassNameA
i: ClassNameA.m Contains classdef
classMethod.m Class method in separate file

ClassNameB.m Contains entire class definition

A path folder can contain classes defined in both @-folders and single files
without an @-folder.

Grouping Classes with Package Folders

The parent folder to a package folder is on the MATLAB path, but the package
folder 1s not. Package folders (which always begin with a “+” character)

can contain multiple class definitions, package-scoped functions, and other
packages. A package folder defines a new name space in which you can
reuse class names. Use the package name to refer to classes and functions
defined in package folders (for example, packagefldi.ClassNameA(),
packagefld2.packageFunction()).

3-3

3 Class Definition—Syntax Reference

pathfolder
— +packagefld1
— @ClassNameA

i: ClassNameA.m Contains classdef
classMethod.m Class method in separate file

L— ClassNameB.m Contains entire class definition

— +packagefld2 Defines a new name space

—— packageFunction.m
—— ClassNameA.m
— ClassNameB.m

More Information on Class Folders

See “Organizing Classes in Folders” on page 4-15 for more information
on class folders and see “Packages Create Namespaces” on page 4-20 for
information on using classes contained in package folders.

See “Methods In Separate Files” on page 3-16 for the syntax used to define
methods external to the classdef file.

Class Components

Class Components

In this section...

“Class Building Blocks — Defining Class Members” on page 3-5

“More In Depth Information” on page 3-6

Class Building Blocks - Defining Class Members

The basic components in the class definition are blocks describing the whole
class and specific aspects of its definition:

e classdef block contains the class definition within a file that starts with the
classdef keyword and terminates with the end keyword. See “Classdef
Block” on page 3-8 for more syntax information.

classdef (ClassAttributes ClassName) ClassName

end

® properties block (one for each unique set of attribute specifications) contains
property definitions, including optional initial values. The properties block
starts with the properties