
MATLAB®

Object-Oriented Programming

R2012b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Object-Oriented Programming
© COPYRIGHT 1984–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2008 Online only New for MATLAB 7.6 (Release 2008a)
October 2008 Online only Revised for MATLAB 7.7 (Release 2008b)
March 2009 Online only Revised for MATLAB 7.8 (Release 2009a)
September 2009 Online only Revised for MATLAB 7.9 (Release 2009b)
March 2010 Online only Revised for MATLAB 7.10 (Release 2010a)
September 2010 Online only Revised for Version 7.11 (Release 2010b)
April 2011 Online only Revised for Version 7.12 (Release 2011a)
September 2011 Online only Revised for Version 7.13 (Release 2011b)
March 2012 Online only Revised for Version 7.14 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)

Contents

Using Object-Oriented Design in MATLAB

1
Begin Using Object-Oriented Programming 1-2
Video Demo of MATLAB Classes . 1-2
MATLAB Programmer Without Object-Oriented
Programming Experience . 1-2

MATLAB Programmer with Object-Oriented Programming
Experience . 1-2

Why Use Object-Oriented Design . 1-4
Approaches to Writing MATLAB Programs 1-4
When Should You Start Creating Object-Oriented
Programs . 1-8

Class Diagram Notation . 1-17

MATLAB Classes Overview

2
Classes in the MATLAB Language 2-2
Classes . 2-2
Some Basic Relationships . 2-4
Introductory Examples . 2-6
Learning Object-Oriented Programming 2-7

Detailed Information and Examples 2-8
Rapid Access to Information . 2-8

Developing Classes — Typical Workflow 2-11
Formulating a Class . 2-11
Implementing the BankAccount Class 2-13
Implementing the AccountManager Class 2-15

v

Using the BankAccount Class . 2-16

Working with Objects in Functions 2-18
Flexible Workflow . 2-18
Performing a Task with an Object . 2-18
Using Object Functionality . 2-20

Class to Represent Structured Data 2-22
Commented Example Code . 2-22
Objects As Data Structures . 2-22
Structure of the Data . 2-23
The TensileData Class . 2-23
Creating an Instance and Assigning Data 2-24
Restricting Properties to Specific Values 2-25
Simplifying the Interface with a Constructor 2-26
Using a Dependent Property . 2-27
Displaying TensileData Objects . 2-28
Method to Plot Stress vs. Strain . 2-29

Class to Implement Linked Lists . 2-31
Commented Example Code . 2-31
Important Concepts Demonstrated 2-31
dlnode Class Design . 2-32
Creating Doubly Linked Lists . 2-33
Why a Handle Class for Linked Lists? 2-34
Defining the dlnode Class . 2-35
Specializing the dlnode Class . 2-40

Class for Graphing Functions . 2-44
Commented Example Code . 2-44
Class Definition Block . 2-44
Using the topo Class . 2-46
Behavior of the Handle Class . 2-47

Class Definition—Syntax Reference

3
Class Files . 3-2
Options for Class Folders . 3-2

vi Contents

Grouping Classes with Package Folders 3-3
More Information on Class Folders 3-4

Class Components . 3-5
Class Building Blocks – Defining Class Members 3-5
More In Depth Information . 3-6

Classdef Block . 3-8
Specifying Attributes and Superclasses 3-8
Assigning Class Attributes . 3-8
Specifying Superclasses . 3-9

Properties . 3-10
What You Can Define . 3-10
Initializing Property Values . 3-10
Defining Default Values . 3-11
Assigning Property Values from the Constructor 3-11
Initializing Properties to Unique Values 3-12
Property Attributes . 3-12
Property Access Methods . 3-13
Referencing Object Properties Using Variables 3-13

Methods and Functions . 3-15
The Methods Block . 3-15
Method Calling Syntax . 3-16
Methods In Separate Files . 3-16
Private Methods . 3-18
More Detailed Information On Methods 3-18
Class-Related Functions . 3-19
Overloading Functions and Operators 3-19

Events and Listeners . 3-21
Specifying Events . 3-21
Listening for Events . 3-21

Specifying Attributes . 3-23
Attribute Syntax . 3-23
Attribute Descriptions . 3-23
Attribute Values . 3-24
Simpler Syntax for true/false Attributes 3-24

vii

Calling Superclass Methods on Subclass Objects 3-26
Calling a Superclass Constructor . 3-26
Calling Superclass Methods . 3-27

Representative Class Code . 3-29
Example of Class Definition Syntax 3-29

MATLAB Code Analyzer Warnings 3-31
Syntax Warnings and Property Names 3-31
Warnings Caused by Variable/Property Name Conflicts . . 3-31
Exception to Variable/Property Name Rule 3-32

Objects In Switch Statements . 3-34
Evaluating the Switch Statement . 3-34
Defining the eq Method . 3-36
Enumerations in Switch Statements 3-38
Functions to Test Objects . 3-40
Functions to Query Class Members 3-41

Using the Editor and Debugger with Classes 3-42
Referring to Class Files . 3-42

Modifying and Reloading Classes 3-43
Ensuring MATLAB Uses Your Changes 3-43

Compatibility with Previous Versions 3-46
New Class-Definition Syntax Introduced with MATLAB
Software Version 7.6 . 3-46

Changes to Class Constructors . 3-47
New Features Introduced with Version 7.6 3-48
Examples of Old and New . 3-48

Comparing MATLAB with Other OO Languages 3-50
Some Differences from C++ and Sun Java Code 3-50
Modifying Objects . 3-51
Common Object-Oriented Techniques 3-56

viii Contents

Defining and Organizing Classes

4
User-Defined Classes . 4-2
What is a Class Definition . 4-2
Attributes for Class Members . 4-2
Kinds of Classes . 4-3
Constructing Objects . 4-3
Class Hierarchies . 4-3

Class Definition . 4-4
classdef Syntax . 4-4
Examples of Class Definitions . 4-4

Class Attributes . 4-6
Table of Class Attributes . 4-6
Specifying Attributes . 4-7

Expressions in Class Definitions . 4-9
Basic Knowledge . 4-9
Where to Use Expressions in Class Definitions 4-9
How MATLAB Evaluates Expressions 4-11

Organizing Classes in Folders . 4-15
Options for Class Folders . 4-15
@-Folders . 4-15
Path Folders . 4-16
Access to Functions Defined in Private Folders 4-16
Class Precedence and MATLAB Path 4-16

Class Precedence . 4-18
InferiorClasses Attribute . 4-18

Packages Create Namespaces . 4-20
Internal Packages . 4-20
Package Folders . 4-20
Referencing Package Members Within Packages 4-21
Referencing Package Members from Outside the
Package . 4-22

Packages and the MATLAB Path . 4-23

ix

Importing Classes . 4-25
Related Information . 4-25
Syntax for Importing Classes . 4-25

Value or Handle Class — Which to Use

5
Comparing Handle and Value Classes 5-2
Basic Difference . 5-2
Why Select Handle or Value . 5-2
Behavior of MATLAB Built-In Classes 5-3
Behavior of User-Defined Classes . 5-4

Which Kind of Class to Use . 5-9
Examples of Value and Handle Classes 5-9
When to Use Handle Classes . 5-9
When to Use Value Classes . 5-10

The Handle Superclass . 5-11
Building on the Handle Class . 5-11
Handle Class Methods . 5-12
Relational Methods . 5-12
Testing Handle Validity . 5-13
When MATLAB Destroys Objects . 5-15

Handle Class Destructor . 5-16
Basic Knowledge . 5-16
Syntax of Class Destructor Method 5-16
When to Define a Destructor Method 5-17
Destructors in Class Hierarchies . 5-18
Object Lifecycle . 5-18
Restrict Explicit Object Deletion . 5-20
Nondestructor Delete Methods . 5-21

Finding Handle Objects and Properties 5-22
Finding Handle Objects . 5-22
Finding Handle Object Properties . 5-22

x Contents

Implementing a Set/Get Interface for Properties 5-23
The Standard Set/Get Interface . 5-23
Subclass hgsetget . 5-23
Get Method Syntax . 5-23
Set Method Syntax . 5-24
Class Derived from hgsetget . 5-25

Controlling the Number of Instances 5-31
Limiting Instances . 5-31

Properties — Storing Class Data

6
How to Use Properties . 6-2
What Are Properties . 6-2
Types of Properties . 6-3

Defining Properties . 6-5
Property Definition Block . 6-5
Accessing Property Values . 6-6
Inheritance of Properties . 6-6
Specifying Property Attributes . 6-7

Property Attributes . 6-8
Table of Property Attributes . 6-8

Mutable and Immutable Properties 6-13
Setting Property Values . 6-13

Property Access Methods . 6-14
Property Access Methods . 6-14
Property Set Methods . 6-16
Property Get Methods . 6-18
Set and Get Methods for Dependent Properties 6-18
Set and Get Method Execution and Property Events 6-21
Access Methods and Subscripted Reference and
Assignment . 6-22

xi

Performing Additional Steps with Property Access
Methods . 6-22

Properties Containing Objects . 6-24
Assigning to Read-Only Properties Containing Objects . . . 6-24

Dynamic Properties — Adding Properties to an
Instance . 6-26
What Are Dynamic Properties . 6-26
Defining Dynamic Properties . 6-27
Responding to Dynamic-Property Events 6-29
Defining Property Access Methods for Dynamic
Properties . 6-31

Dynamic Properties and ConstructOnLoad 6-32

Methods — Defining Class Operations

7
How to Use Methods . 7-2
Class Methods . 7-2
Method Naming . 7-3

Method Attributes . 7-5
Table of Method Attributes . 7-5

Ordinary Methods . 7-7
Defining Methods . 7-7
Determining Which Method Is Invoked 7-9
Specifying Precedence . 7-13
Controlling Access to Methods . 7-13
Invoking Superclass Methods in Subclass Methods 7-14
Invoking Built-In Functions . 7-15

Class Constructor Methods . 7-16
Rules for Constructors . 7-16
Related Information . 7-17
Examples of Class Constructors . 7-17
Initializing the Object Within a Constructor 7-18

xii Contents

Constructing Subclasses . 7-20
Errors During Class Construction . 7-22
Basic Structure of Constructor Methods 7-23

Static Methods . 7-25
Why Define Static Methods . 7-25
Calling Static Methods . 7-26

Overloading Functions for Your Class 7-27
Overloading MATLAB Functions . 7-27
Rules for Naming to Avoid Conflicts 7-28

Object Precedence in Expressions Using Operators . . . 7-30
Specifying Precedence of User-Defined Classes 7-30

Class Methods for Graphics Callbacks 7-32
Callback Arguments . 7-32
General Syntax for Callbacks . 7-32
Object Scope and Anonymous Functions 7-33
Example — Class Method as a Slider Callback 7-34

Object Arrays

8
Creating Object Arrays . 8-2
Basic Knowledge . 8-2
Building Arrays in the Constructor 8-2
Initializing Arrays of Value Objects 8-3
Initial Value of Object Properties . 8-5
Creating Empty Arrays . 8-5
Initializing Arrays of Handle Objects 8-7
Referencing Property Values in Object Arrays 8-9
Object Arrays with Dynamic Properties 8-10

Concatenating Objects of Different Classes 8-13
Basic Knowledge . 8-13
MATLAB Concatenation Rules . 8-13
Concatenating Objects . 8-14

xiii

Converting to the Dominant Class . 8-14
Implementing Converter Methods . 8-17

Events — Sending and Responding to Messages

9
Learning to Use Events and Listeners 9-2
Why Use Events and Listeners . 9-2
What You Need to Know . 9-2
Customizing Event Data . 9-3
Observe Property Changes . 9-6

Create a Property Set Listener . 9-8

Events and Listeners — Concepts 9-11
The Event Model . 9-11
Default Event Data . 9-13
Events Only in Handle Classes . 9-13
Property-Set and Query Events . 9-14
Listeners . 9-15

Event Attributes . 9-16
Table of Event Attributes . 9-16

Events and Listeners — Syntax and Techniques 9-18
Naming Events . 9-18
Triggering Events . 9-18
Listening to Events . 9-19
Defining Event-Specific Data . 9-21
Ways to Create Listeners . 9-22
Defining Listener Callback Functions 9-24
Callback Execution . 9-26

Listen for Changes to Property Values 9-27
Creating Property Listeners . 9-27
Property Event and Listener Classes 9-29
Aborting Set When Value Does Not Change 9-31

xiv Contents

Update Graphs Using Events and Listeners 9-34
Example Overview . 9-34
Access Fully Commented Example Code 9-35
Techniques Demonstrated in This Example 9-36
Summary of fcneval Class . 9-36
Summary of fcnview Class . 9-37
Methods Inherited from Handle Class 9-39
Using the fcneval and fcnview Classes 9-39
Implementing the UpdateGraph Event and Listener 9-42
The PostSet Event Listener . 9-47
Enabling and Disabling the Listeners 9-50

Building on Other Classes

10
Hierarchies of Classes — Concepts 10-2
Classification . 10-2
Developing the Abstraction . 10-3
Designing Class Hierarchies . 10-4
Super and Subclass Behavior . 10-4
Implementation and Interface Inheritance 10-5

Creating Subclasses — Syntax and Techniques 10-7
Defining a Subclass . 10-7
Initializing Superclasses from Subclasses 10-7
Constructor Arguments and Object Initialization 10-10
Call Only Direct Superclass from Constructor 10-10
Sequence of Constructor Calls in a Class Hierarchy 10-12
Using a Subclass to Create an Alias for an Existing
Class . 10-12

Modifying Superclass Methods and Properties 10-14
Modifying Superclass Methods . 10-14
Modifying Superclass Properties . 10-16
Private Local Property Takes Precedence in Method 10-16

Subclassing Multiple Classes . 10-18
Class Member Compatibility . 10-18
Using Multiple Inheritance . 10-19

xv

Controlling Allowed Subclasses . 10-20
Basic Knowledge . 10-20
Why Control Allowed Subclasses . 10-20
Specify Allowed Subclasses . 10-21
Define a Sealed Hierarchy of Classes 10-22

Controlling Access to Class Members 10-24
Basic Knowledge . 10-24
Applications for Access Control Lists 10-25
Specify Access to Class Members . 10-26
Properties with Access Lists . 10-29
Methods with Access Lists . 10-29
Abstract Methods with Access Lists 10-33

Supporting Both Handle and Value Subclasses 10-34
Basic Knowledge . 10-34
Handle Compatibility Rules . 10-34
Defining Handle-Compatible Classes 10-35
Subclassing Handle-Compatible Classes 10-38
Methods for Handle Compatible Classes 10-40
Handle-Compatible Classes and Heterogeneous Arrays . . 10-41

Subclassing MATLAB Built-In Types 10-43
MATLAB Built-In Types . 10-43
Why Subclass Built-In Types . 10-44
Behavior of Built-In Functions with Subclass Objects 10-45
A Class to Manage uint8 Data . 10-52
Subclasses of Built-In Types with Properties 10-59
Understanding size and numel . 10-65
A Class to Represent Hardware . 10-70

Determining the Class of an Array 10-73
Querying the Class Name . 10-73
Testing for Class . 10-73
Testing for Specific Types . 10-74
Testing for Most Derived Class . 10-75

Defining Abstract Classes . 10-77
Abstract Classes . 10-77
Declaring Classes as Abstract . 10-78
Determine If a Class Is Abstract . 10-79
Find Inherited Abstract Properties and Methods 10-80

xvi Contents

Defining Interfaces . 10-82
Interfaces and Abstract Classes . 10-82
An Interface for Classes Implementing Graphs 10-82

Saving and Loading Objects

11
Understanding the Save and Load Process 11-2
The Default Save and Load Process 11-2
When to Modify Object Saving and Loading 11-4

Modifying the Save and Load Process 11-6
Class saveobj and loadobj Methods 11-6
Processing Objects During Load . 11-7
Save and Load Applications . 11-7

Maintaining Class Compatibility . 11-9
Versions of a Phone Book Application Program 11-9

Passing Arguments to Constructors During Load 11-14
Calling Constructors When Loading Objects 11-14
Code for This Example . 11-14
Example Overview . 11-14

Saving and Loading Objects from Class Hierarchies . . 11-17
Saving and Loading Subclass Objects 11-17

Saving and Loading Dynamic Properties 11-20
Reconstructing Objects That Have Dynamic Properties . . 11-20

Tips for Saving and Loading . 11-22
Using Default Property Values to Reduce Storage 11-22
Avoiding Property Initialization Order Dependency 11-23
When to Use Transient Properties . 11-25
Calling Constructor When Loading 11-25

xvii

Enumerations

12
Defining Named Values . 12-2
Kinds of Predefined Names . 12-2

Working with Enumerations . 12-4
Basic Knowledge . 12-4
Using Enumeration Classes . 12-5
Defining Methods in Enumeration Classes 12-9
Defining Properties in Enumeration Classes 12-9
Array Expansion Operations . 12-11
Constructor Calling Sequence . 12-11
Restrictions Applied to Enumeration Classes 12-13
Techniques for Defining Enumerations 12-13

Enumerations Derived from Built-In Types 12-16
Basic Knowledge . 12-16
Why Derive Enumerations from Built-In Types 12-16
Aliasing Enumeration Names . 12-18
Superclass Constructor Returns Underlying Value 12-19
Default Converter . 12-20

Mutable (Handle) vs. Immutable (Value) Enumeration
Members . 12-22
Basic Knowledge . 12-22
Selecting Handle- or Value-Based Enumerations 12-22
Value-Based Enumeration Classes 12-22
Handle-Based Enumeration Classes 12-24
Using Enumerations to Represent a State 12-28

Enumerations That Encapsulate Data 12-30
Basic Knowledge . 12-30
Store Data in Properties . 12-30

Saving and Loading Enumerations 12-35
Basic Knowledge . 12-35
Built-In and Value-Based Enumeration Classes 12-35
Simple and Handle-Based Enumeration Classes 12-35
Causes: Loading as Struct Instead of Object 12-36

xviii Contents

Constant Properties

13
Properties with Constant Values . 13-2
Defining Named Constants . 13-2
Constant Property Assigned a Handle Object 13-4
Constant Property Assigned Any Class Instance 13-4

Information from Class Metadata

14
Class Metadata . 14-2
What Is Class Metadata? . 14-2
The meta Package . 14-2
Metaclass Objects . 14-3

Inspecting Class and Object Metadata 14-5
Inspecting a Class . 14-5
Metaclass EnumeratedValues Property 14-7

Finding Objects with Specific Values 14-9
Find Handle Objects . 14-9
Find by Attribute Settings . 14-10

Getting Information About Properties 14-14
The meta.property object . 14-14
How to Find Properties with Specific Attributes 14-18

Find Default Values in Property Metadata 14-21
meta.property Object . 14-21
meta.property Data . 14-21

xix

Specializing Object Behavior

15
Methods That Modify Default Behavior 15-2
How to Modify Behavior . 15-2
Which Methods Control Which Behaviors 15-2
Overloading and Overriding Functions and Methods 15-4
When to Overload MATLAB Functions 15-5
Caution When Overloading MATLAB Functions 15-6

Redefining Concatenation for Your Class 15-8
Default Concatenation . 15-8

Object Display . 15-9
Default Display . 15-9

Converting Objects to Another Class 15-11
Why Implement a Converter . 15-11

Indexed Reference and Assignment 15-13
Overview . 15-13
Default Indexed Reference and Assignment 15-13
What You Can Modify . 15-15
subsref and subsasgn Within Class Methods — Built-In
Called . 15-16

Understanding Indexed Reference . 15-18
Avoid Overriding Access Attributes 15-21
Understanding Indexed Assignment 15-23
A Class with Modified Indexing . 15-26
Defining end Indexing for an Object 15-31
Using Objects as Indices . 15-32

Implementing Operators for Your Class 15-35
Overloading Operators . 15-35
MATLAB Operators and Associated Functions 15-36

xx Contents

Implementing a Class for Polynomials

16
A Polynomial Class . 16-2
Adding a Polynomial Object to the MATLAB Language . . 16-2
Displaying the Class Files . 16-2
Summary of the DocPolynom Class 16-3
The DocPolynom Constructor Method 16-5
Removing Irrelevant Coefficients . 16-6
Converting DocPolynom Objects to Other Types 16-7
The DocPolynom disp Method . 16-10
The DocPolynom subsref Method . 16-11
Defining Arithmetic Operators for DocPolynom 16-14
Overloading MATLAB Functions for the DocPolynom
Class . 16-16

Designing Related Classes

17
A Simple Class Hierarchy . 17-2
Shared and Specialized Properties . 17-2
Designing a Class for Financial Assets 17-3
Displaying the Class Files . 17-4
Summary of the DocAsset Class . 17-4
The DocAsset Constructor Method . 17-5
The DocAsset Display Method . 17-6
Designing a Class for Stock Assets 17-7
Displaying the Class Files . 17-7
Summary of the DocStock Class . 17-7
Designing a Class for Bond Assets . 17-10
Displaying the Class Files . 17-10
Summary of the DocBond Class . 17-11
Designing a Class for Savings Assets 17-15
Displaying the Class Files . 17-15
Summary of the DocSavings Class . 17-15

Containing Assets in a Portfolio . 17-19
Kinds of Containment . 17-19
Designing the DocPortfolio Class . 17-19

xxi

Displaying the Class Files . 17-19
Summary of the DocPortfolio Class 17-20
The DocPortfolio Constructor Method 17-22
The DocPortfolio disp Method . 17-23
The DocPortfolio pie3 Method . 17-23
Visualizing a Portfolio . 17-25

Index

xxii Contents

1

Using Object-Oriented
Design in MATLAB

• “Begin Using Object-Oriented Programming” on page 1-2

• “Why Use Object-Oriented Design” on page 1-4

• “Class Diagram Notation” on page 1-17

1 Using Object-Oriented Design in MATLAB®

Begin Using Object-Oriented Programming

In this section...

“Video Demo of MATLAB Classes” on page 1-2

“MATLAB Programmer Without Object-Oriented Programming Experience”
on page 1-2

“MATLAB Programmer with Object-Oriented Programming Experience”
on page 1-2

Video Demo of MATLAB Classes
You can watch a brief presentation on MATLAB® class development by
clicking this link:

Play video

MATLAB Programmer Without Object-Oriented
Programming Experience
If you create MATLAB programs, but are not defining classes to accomplish
your tasks, start with the following sections:

• “Why Use Object-Oriented Design” on page 1-4

• “Classes in the MATLAB Language” on page 2-2

• “Introductory Examples” on page 2-6

• “Learning Object-Oriented Programming” on page 2-7

MATLAB Programmer with Object-Oriented
Programming Experience
If have experience with both MATLAB programming and object-oriented
techniques, start with the following sections:

• “Class Syntax Fundamentals”

• “Compatibility with Previous Versions ” on page 3-46

1-2

Begin Using Object-Oriented Programming

• “Comparing MATLAB with Other OO Languages” on page 3-50

1-3

1 Using Object-Oriented Design in MATLAB®

Why Use Object-Oriented Design

In this section...

“Approaches to Writing MATLAB Programs” on page 1-4

“When Should You Start Creating Object-Oriented Programs” on page 1-8

Approaches to Writing MATLAB Programs
Creating software applications typically involves designing how to represent
the application data and determining how to implement operations performed
on that data. Procedural programs pass data to functions, which perform the
necessary operations on the data. Object-oriented software encapsulates
data and operations in objects that interact with each other via the object’s
interface.

The MATLAB language enables you to create programs using both procedural
and object-oriented techniques and to use objects and ordinary functions in
your programs.

Procedural Program Design
In procedural programming, your design focuses on steps that must be
executed to achieve a desired state. You typically represent data as individual
variables or fields of a structure and implement operations as functions
that take the variables as arguments. Programs usually call a sequence of
functions, each one of which is passed data, and then returns modified data.
Each function performs an operation or perhaps many operations on the data.

Object-Oriented Program Design
The object-oriented program design involves:

• Identifying the components of the system or application that you want
to build

• Analyzing and identifying patterns to determine what components are used
repeatedly or share characteristics

• Classifying components based on similarities and differences

1-4

Why Use Object-Oriented Design

After performing this analysis, you define classes that describe the objects
your application uses.

Classes and Objects
A class describes a set of objects with common characteristics. Objects are
specific instances of a class. The values contained in an object’s properties are
what make an object different from other objects of the same class (an object
of class double might have a value of 5). The functions defined by the class
(called methods) are what implement object behaviors that are common to all
objects of a class (you can add two doubles regardless of their values).

Using Objects in MATLAB Programs
The MATLAB language defines objects that are designed for use in any
MATLAB code. For example, consider the try/catch programming construct.

If the code executed in the try block generates an error, program control
passes to the code in the catch block. This behavior enables your program
to provide special error handling that is more appropriate to your particular
application. However, you must have enough information about the error to
take the appropriate action.

MATLAB provides detailed information about the error by passing an
MException object to functions executing the try/catch blocks.

The following try/catch blocks display the error message stored in an
MException object when a function (surf in this case) is called without the
necessary arguments:

try
surf

catch ME
disp(ME.message)

end
Not enough input arguments.

In this code, ME is an object of the MException class, which is returned by
the catch statement to the function’s workspace. Displaying the value of
the object’s message property returns information about the error (the surf

1-5

1 Using Object-Oriented Design in MATLAB®

function requires input arguments). However, this is not all the information
available in the MException object.

You can list the public properties of an object with the properties function:

properties(ME)
Properties for class MException:

identifier
message
cause
stack

Objects Organize Data
The information returned in an MException object is stored in properties,
which are much like structure fields. You reference a property using dot
notation, as in ME.message. This reference returns the value of the property.
For example,

class(ME.message)
ans =
char

shows that the value of the message property is an array of class char (a text
string). The stack property contains a MATLAB struct:

ME.stack
ans =

file: [1x90 char]
name: 'surf'
line: 50

You can simply treat the property reference, ME.stack as a structure and
reference its fields:

ME.stack.file
ans =
D:\myMATLAB\matlab\toolbox\matlab\graph3d\surf.m

The file field of the struct contained in the stack property is a character
array:

1-6

Why Use Object-Oriented Design

class(ME.stack.file)
ans =
char

You could, for example, use a property reference in MATLAB functions:

strcmp(ME.stack.name,'surf')
ans =

1

Object properties can contain any class of value and can even determine their
value dynamically. This provides more flexibility than a structure and is
easier to investigate than a cell array, which lacks fieldnames and requires
indexing into various cells using array dimensions.

Objects Manage Their Own Data
You could write a function that generates a report from the data returned by
MException object properties. This function could become quite complicated
because it would have to be able to handle all possible errors. Perhaps you
would use different functions for different try/catch blocks in your program.
If the data returned by the error object needed to change, you would have to
update the functions you have written to use the new data.

Objects provide an advantage in that objects define their own operations. A
requirement of the MException object is that it can generate its own report.
The methods that implement an object’s operations are part of the object
definition (i.e., specified by the class that defines the object). The object
definition might be modified many times, but the interface your program (and
other programs) use does not change. Think of your program as a client of the
object, which isolates your code from the object’s code.

To see what methods exist for MException objects, use the methods function:

methods(ME)

Methods for class MException:

addCause getReport ne throw

eq isequal rethrow throwAsCaller

Static methods:

1-7

1 Using Object-Oriented Design in MATLAB®

last

You can use these methods like any other MATLAB statement when there is
an MException object in the workspace. For example:

ME.getReport
ans =
Error using ==> surf
Not enough input arguments.

Objects often have methods that overload (redefined for the particular class of
the object) MATLAB functions (e.g., isequal, fieldnames, etc.). This enables
you to use objects just like other values. For example, MException objects
have an isequal method. This method enables you to compare these objects
in the same way you would compare variables containing doubles. If ME and
ME2 are MException objects, you can compare them with this statement:

isequal(ME,ME2)

However, what really happens in this case is MATLAB calls the MException
isequal method because you have passed MException objects to isequal.

Similarly, the eq method enables you to use the == operator with MException
objects:

ME == ME2

Of course, objects should support only those methods that make sense. For
example, it would probably not make sense to multiply MException objects so
the MException class does not implement methods to do so.

When Should You Start Creating Object-Oriented
Programs
Objects are well integrated into the MATLAB language, regardless of whether
you are writing simple functions, working interactively in the command
window, or creating large applications.

Simple programming tasks are easily implemented as simple functions, but
as the magnitude and complexity of your tasks increase, functions become
more complex and difficult to manage.

1-8

Why Use Object-Oriented Design

As functions become too large, you might break them into smaller functions
and pass data from one to the other. However, as the number of functions
becomes large, designing and managing the data passed to functions becomes
difficult and error prone. At this point, you should consider moving your
MATLAB programming tasks to object-oriented designs.

Understanding a Problem in Terms of Its Objects
Thinking in terms of things or objects is simpler and more natural for some
problems. You might think of the nouns in your problem statement as the
objects you need to define and the verbs as the operations you must perform.

For example, consider performing an analysis of economic institutions. It
would be difficult to represent the various institutions as procedures even
though they are all actors in the overall economy. Consider banks, mortgage
companies, credit unions. You can represent each institution as an object that
performs certain actions and contains certain data. The process of designing
the objects involves identifying the characteristics of these institutions that
are important to your application.

Identify Commonalities. All of these institutions belong in the general class
of lending institutions, so all objects might provide a loan operation and have
a Rate property that stores the current interest rate.

Identify Differences. You must also consider how each institution differs. A
mortgage company might provide only home mortgage loans. Therefore, the
loan operation might need be specialized for mortgage companies to provide
fixRateLoan and varRateLoan methods to accommodate two loan types.

Consider Interactions. Institutions can interact, as well. For example, a
mortgage company might sell a mortgage to a bank. To support this activity,
the mortgage company object would support a sellMortgage operation and
the bank object would support a buyMortgage operation.

You might also define a loan object, which would represent a particular loan.
It might need Amount, Rate, and Lender properties. When the loan is sold
to another institution, the Lender property could be changed, but all other
information is neatly packaged within the loan object.

1-9

1 Using Object-Oriented Design in MATLAB®

Add Only What Is Necessary. It is likely that these institutions engage in
many activities that are not of interest to your application. During the design
phase, you need to determine what operations and data an object needs to
contain based on your problem definition.

Managing Data. Objects encapsulate the model of what the object
represents. If the object represents a kind of lending institution, all the
behaviors of lending institutions that are necessary for your application are
contained by this object. This approach simplifies the management of data
that is necessary in a typical procedural program.

Objects Manage Internal State
In the simplest sense, objects are data structures that encapsulate some
internal state, which you access via its methods. When you invoke a method,
it is the object that determines exactly what code to execute. In fact, two
objects of the same class might execute different code paths for the same
method invocation because their internal state is different. The internal
workings of the object need not be of concern to your program — you simply
use the interface the object provides.

Hiding the internal state from general access leads to more robust code. If a
loan object’s Lender property can be changed only by the object’s newLender
method, then inadvertent access is less likely than if the loan data were
stored in a cell array where an indexing assignment statement could damage
the data.

Objects provide a number of useful features not available from structures and
cell arrays. For example, objects provide the ability to:

• Constrain the data assigned to any given property by executing a function
to test values whenever an assignment is made

• Calculate the value of a property only when it is queried and thereby avoid
storing data that might be dependent on the state of other data

• Broadcast notices when any property value is queried or changed, to which
any number of listeners can respond by executing functions

• Restrict access to properties and methods

1-10

Why Use Object-Oriented Design

Reducing Redundancy
As the complexity of your program increases, the benefits of an object-oriented
design become more apparent. For example, suppose you need to implement
the following procedure as part of your application:

1 Check inputs

2 Perform computation on the first input argument

3 Transform the result of step 2 based on the second input argument

4 Check validity of outputs and return values

This simple procedure is easily implemented as an ordinary function. But
now suppose you need to use this procedure again somewhere in your
application, except that step 2 must perform a different computation. You
could simply copy and paste the first implementation, and then rewrite step
2. Or you could create a function that accepted an option indicating which
computation to make, and so on. However, these options lead to more and
more complicated code.

An object-oriented design could result in a simpler solution by factoring
out the common code into what is called a base class. The base class would
define the algorithm used and implement whatever is common to all cases
that use this code. Step 2 could be defined syntactically, but not implemented,
leaving the specialized implementation to the classes that you then derive
from this base class.

Step 1
function checkInputs()

% actual implementation
end

Step 2
function results = computeOnFirstArg()

% specify syntax only
end

Step 3
function transformResults()

1-11

1 Using Object-Oriented Design in MATLAB®

% actual implementation
end

Step 4
function out = checkOutputs()

% actual implementation
end

The code in the base class is not copied or modified, it is inherited by the
various classes you derive from the base class. This reduces the amount
of code to be tested, and isolates your program from changes to the basic
procedure.

Defining Consistent Interfaces
The use of a class as the basis for similar, but more specialized classes is a
useful technique in object-oriented programming. This class is often called
an interface class. Incorporating this kind of class into your program design
enables you to:

• Identify the requirements of a particular objective

• Encode these requirements into your program as an interface class

For example, suppose you are creating an object to return information about
errors that occur during the execution of specific blocks of code. There might
be functions that return special types of information that you want to include
in an error report only when the error is generated by these functions.

The interface class, from which all error objects are derived, could specify that
all error objects must support a getReport method, but not specify how to
implement that method. The class of error object created for the functions
returning special information could implement its version of the getReport
method to handle the different data.

The requirement defined by the interface class is that all error objects be able
to display an error report. All programs that use this feature can rely on it
being implement in a consistent way.

1-12

Why Use Object-Oriented Design

All of the classes derived from the interface class can create a method called
getReport without any name conflicts because it is the class of the object that
determines which getReport is called.

Reducing Complexity
Objects reduce complexity by reducing what you need to know to use a
component or system. This happens in a couple of ways:

• Objects provide an interface that hides implementation details.

• Objects enforce rules that control how objects interact.

To illustrate these advantages, consider the implementation of a data
structure called a doubly linked list. See “Class to Implement Linked Lists”
on page 2-31 for the actually implementation.

Here is a diagram of a three-element list:

n3

Properties
Next
Prev

n2

Properties
Next
Prev

n1

Properties
Next
Prev

n2.Nextn2n2.Prev

To add a new node to the list, it is necessary to disconnect the existing nodes
in the list, insert the new node, and reconnect the nodes appropriately. Here
are the basic steps:

First disconnect the nodes:

1 Unlink n2.Prev from n1

2 Unlink n1.Next from n2

Now create the new node, connect it, and renumber the original nodes:

3 Link new.Prev to n1

1-13

1 Using Object-Oriented Design in MATLAB®

4 Link new.Next to n3 (was n2)

5 Link n1.Next to new (will be n2)

6 Link n3.Prev to new (will be n2)

n4

Properties
Next
Prev

n3

Properties
Next
Prev

n2

Properties
Next
Prev

n1

Properties
Next
Prev

Newly inserted node

The details of how methods perform these steps are encapsulated in the class
design. Each node object contains the functionality to insert itself into or
remove itself from the list.

For example, in this class, every node object has an insertAfter method. To
add a new node to a list, create the node object and then call its insertAfter
method:

nnew = NodeConstructor;
nnew.insertAfter(n1)

Because the node class defines the code that implements these operations,
this code is:

• Implemented in an optimal way by the class author

• Always up to date with the current version of the class

• Well tested

• Can automatically update old-versions of the objects when they are loaded
from MAT-files.

The object methods enforce the rules for how the nodes interact. This design
removes the responsibility for enforcing rules from the applications that use
the objects. It also means the application is less likely to generate errors in its
own implementation of the process.

1-14

Why Use Object-Oriented Design

Fostering Modularity
As you decompose a system into objects (car –> engine –> fuel system –>
oxygen sensor), you form modules around natural boundaries. These objects
provide interfaces by which they interact with other modules (which might be
other objects or functions). Often the data and operations behind the interface
are hidden from other modules to segregate implementation from interface.

Classes provide three levels of control over code modularity:

• Public — Any code can access this particular property or call this method.

• Protected — Only the object’s own methods and those of the object’s whose
class has been derived from this object’s class can access this property
or call this method.

• Private — Only the object’s own methods can access this property or call
this method.

Overloaded Functions and Operators
When you define a class, you can overload existing MATLAB functions to work
with your new object. For example, the MATLAB serial port class overloads
the fread function to read data from the device connected to the port
represented by this object. You can define various operations, such as equality
(eq) or addition (plus), for a class you have defined to represent your data.

Reduce Code Redundancy
Suppose your application requires a number of dialog windows to interact
with users. By defining a class containing all the common aspects of the
dialog windows, and then deriving the specific dialog classes from this base
class, you can:

• Reuse code that is common to all dialog window implementations

• Reduce code testing effort due to common code

• Provide a common interface to dialog developers

• Enforce a consistent look and feel

• Apply global changes to all dialog windows more easily

1-15

1 Using Object-Oriented Design in MATLAB®

Learning More
See “Classes in the MATLAB Language” on page 2-2 to learn more about
writing object-oriented MATLAB programs.

1-16

Class Diagram Notation

Class Diagram Notation
The diagrams representing classes that appear in this documentation follow
the conventions described in the following legend.

1-17

1 Using Object-Oriented Design in MATLAB®

BankAccount

Properties
AccountNumber
AccountBalance

Employee

Properties

Stock

Asset

FileIDFileReader

TireCar

Name
Address

Concept

Object

Class

is_a

has_a

(aggregation)

(composition)

Graphical representation Example

1-18

2

MATLAB Classes Overview

• “Classes in the MATLAB Language” on page 2-2

• “Detailed Information and Examples” on page 2-8

• “Developing Classes — Typical Workflow” on page 2-11

• “Working with Objects in Functions” on page 2-18

• “Class to Represent Structured Data” on page 2-22

• “Class to Implement Linked Lists” on page 2-31

• “Class for Graphing Functions” on page 2-44

2 MATLAB® Classes Overview

Classes in the MATLAB Language

In this section...

“Classes” on page 2-2

“Some Basic Relationships” on page 2-4

“Introductory Examples” on page 2-6

“Learning Object-Oriented Programming” on page 2-7

Classes
In the MATLAB language, every value is assigned to a class. For example,
creating a variable with an assignment statement constructs a variable of
the appropriate class:

>> a = 7;
>> b = 'some string';
>> whos

Name Size Bytes Class

a 1x1 8 double
b 1x11 22 char

Basic commands like whos display the class of each value in the workspace.
This information helps MATLAB users recognize that some values are
characters and display as text while other values might be double, single,
or other types of numbers. Some variables can contain different classes
of values like cells.

User-Defined Classes
You can create your own MATLAB classes. For example, you could define a
class to represent polynomials. This class could define the operations typically
associated with MATLAB classes, like addition, subtraction, indexing,
displaying in the command window, and so on. However, these operations
would need to perform the equivalent of polynomial addition, polynomial
subtraction, and so on. For example, when you add two polynomial objects:

p1 + p2

2-2

Classes in the MATLAB® Language

the plus operation would know how to add polynomial objects because the
polynomial class defines this operation.

When you define a class, you overload special MATLAB functions (plus.m for
the addition operator) that are called by the MATLAB runtime when those
operations are applied to an object of your class.

See “A Polynomial Class” on page 16-2 for an example that creates just such
a class.

MATLAB Classes — Key Terms
MATLAB classes use the following words to describe different parts of a class
definition and related concepts.

• Class definition — Description of what is common to every instance of
a class.

• Properties — Data storage for class instances

• Methods — Special functions that implement operations that are usually
performed only on instances of the class

• Events — Messages that are defined by classes and broadcast by class
instances when some specific action occurs

• Attributes — Values that modify the behavior of properties, methods,
events, and classes

• Listeners — Objects that respond to a specific event by executing a callback
function when the event notice is broadcast

• Objects — Instances of classes, which contain actual data values stored in
the objects’ properties

• Subclasses — Classes that are derived from other classes and that inherit
the methods, properties, and events from those classes (subclasses facilitate
the reuse of code defined in the superclass from which they are derived).

• Superclasses — Classes that are used as a basis for the creation of more
specifically defined classes (i.e., subclasses).

• Packages — Folders that define a scope for class and function naming

2-3

2 MATLAB® Classes Overview

These are general descriptions of these components and concepts. This
documentation describes all of these components in detail.

Some Basic Relationships
This section discusses some of the basic concepts used by MATLAB classes.

Classes
A class is a definition that specifies certain characteristics that all instances
of the class share. These characteristics are determined by the properties,
methods, and events that define the class and the values of attributes that
modify the behavior of each of these class components. Class definitions
describe how objects of the class are created and destroyed, what data the
objects contain, and how you can manipulate this data.

Class Hierarchies
It sometimes makes sense to define a new class in terms of existing classes.
This enables you to reuse the designs and techniques in a new class that
represents a similar entity. You accomplish this reuse by creating a subclass.
A subclass defines objects that are a subset of those defined by the superclass.
A subclass is more specific than its superclass and might add new properties,
methods, and events to those inherited from the superclass.

Mathematical sets can help illustrate the relationships among classes. In the
following diagram, the set of Positive Integers is a subset of the set of Integers
and a subset of Positive numbers. All three sets are subsets of Real numbers,
which is a subset of All Numbers.

The definition of Positive Integers requires the additional specification that
members of the set be greater than zero. Positive Integers combine the
definitions from both Integers and Positives. The resulting subset is more
specific, and therefore more narrowly defined, than the supersets, but still
shares all the characteristics that define the supersets.

2-4

Classes in the MATLAB® Language

All
Numbers

Integers

Positive
Integers

Positives

Reals

The “is a” relationship is a good way to determine if it is appropriate to define
a particular subset in terms of existing supersets. For example, each of the
following statements makes senses:

• A Positive Integer is an Integer

• A Positive Integer is a Positive number

If the “is a” relationship holds, then it is likely you can define a new a class
from a class or classes that represent some more general case.

Reusing Solutions
Classes are usually organized into taxonomies to foster code reuse. For
example, if you define a class to implement an interface to the serial port of a
computer, it would probably be very similar to a class designed to implement
an interface to the parallel port. To reuse code, you could define a superclass
that contains everything that is common to the two types of ports, and then

2-5

2 MATLAB® Classes Overview

derive subclasses from the superclass in which you implement only what is
unique to each specific port. Then the subclasses would inherit all of the
common functionality from the superclass.

Objects
A class is like a template for the creation of a specific instance of the class.
This instance or object contains actual data for a particular entity that is
represented by the class. For example, an instance of a bank account class
is an object that represents a specific bank account, with an actual account
number and an actual balance. This object has built into it the ability to
perform operations defined by the class, such as making deposits to and
withdrawals from the account balance.

Objects are not just passive data containers. Objects actively manage the
data contained by allowing only certain operations to be performed, by hiding
data that does not need to be public, and by preventing external clients from
misusing data by performing operations for which the object was not designed.
Objects even control what happens when they are destroyed.

Encapsulating Information
An important aspect of objects is that you can write software that accesses
the information stored in the object via its properties and methods without
knowing anything about how that information is stored, or even whether it
is stored or calculated when queried. The object isolates code that accesses
the object from the internal implementation of methods and properties. You
can define classes that hide both data and operations from any methods that
are not part of the class. You can then implement whatever interface is most
appropriate for the intended use.

Introductory Examples
The following examples illustrate some basic features of MATLAB classes.

“Developing Classes — Typical Workflow” on page 2-11 — applies
object-oriented thinking to a familiar concept to illustrate the process of
designing classes.

2-6

Classes in the MATLAB® Language

“Working with Objects in Functions” on page 2-18 — shows advantages of
using objects to define certain operations and how smoothly object fit in a
function-oriented workflow.

“Class to Represent Structured Data” on page 2-22 — shows the application of
object-oriented techniques to managing data.

“Class to Implement Linked Lists” on page 2-31 — using a handle class to
implement a doubly linked list.

Learning Object-Oriented Programming
The following references can help you develop a basic understanding of
object-oriented design and concepts.

• Shalloway, A., J. R. Trott, Design Patterns Explained A New Perspective on
Object-Oriented Design.. Boston, MA: Addison-Wesley 2002.

• Gamma, E., R. Helm, R. Johnson, J. Vlissides, Design Patterns Elements of
Reusable Object-Oriented Software. Boston, MA: Addison-Wesley 1995.

• Freeman, E., Elisabeth Freeman, Kathy Sierra, Bert Bates, Head First
Design Patterns. Sebastopol, CA 2004.

• See Wikipedia® :Object Oriented Programming

2-7

http://en.wikipedia.org/wiki/Object-oriented_programming

2 MATLAB® Classes Overview

Detailed Information and Examples

Rapid Access to Information
This section provides a gateway to both conceptual information and example
implementations. It enables you to scan the information available for broad
topics

Topic
Background Information and
Discussion Code Examples

Attributes
(all) Attribute Tables

Classes

List of all class member attributes:
Attribute Tables

“Classes in the MATLAB Language”
on page 2-2 for an introduction
to object-oriented programming
concepts.

“User-Defined Classes” on page 4-2
for an overview of classes features.

“Developing Classes — Typical
Workflow” on page 2-11 for a simple
example

“Class to Represent Structured Data”
on page 2-22

“Class to Implement Linked Lists” on
page 2-31

“A Polynomial Class” on page 16-2

“A Simple Class Hierarchy” on page
17-2

“Containing Assets in a Portfolio” on
page 17-19

Attributes “Class Attributes” on page 4-6 for a
list of class attributes

“Hierarchies of Classes — Concepts”
on page 10-2 describes how classes
can be built on other classes

“A Simple Class Hierarchy” on page
17-2

2-8

Detailed Information and Examples

(Continued)

Topic
Background Information and
Discussion Code Examples

Attributes
(all) Attribute Tables

“Creating Subclasses — Syntax and
Techniques” on page 10-7

“Modifying Superclass Methods and
Properties” on page 10-14

“Specializing the dlnode Class” on page
2-40

Kinds of classes “Comparing Handle and Value
Classes” on page 5-2

“The Handle Superclass” on page
5-11 — a detailed description of the
abstract class.

“Class to Implement Linked Lists” on
page 2-31

Properties

“Defining Properties” on page 6-5 for
an overview of what properties are
and how to use them

“Property Definition Block” on page
6-5 shows how to specify initial
values

“Restricting Properties to Specific
Values” on page 2-25

Attributes “Specifying Property Attributes”
on page 6-7 for a list of property
attributes

“Using a Dependent Property” on page
2-27

“Dynamic Properties — Adding
Properties to an Instance” on page
6-26

“Assigning Data to the Dynamic
Property” on page 6-28

Methods

“How to Use Methods” on page 7-2
for an overview of methods

Attributes “Method Attributes” on page 7-5 for
a list of method attributes

2-9

2 MATLAB® Classes Overview

(Continued)

Topic
Background Information and
Discussion Code Examples

Attributes
(all) Attribute Tables

“Class Constructor Methods” on
page 7-16 for information about
constructor methods

“Simplifying the Interface with a
Constructor” on page 2-26

“Handle Class Destructor” on page
5-16

“Property Access Methods” on page
6-14

“Restricting Properties to Specific
Values” on page 2-25

“Implementing a Set/Get Interface
for Properties” on page 5-23

Events

“Events and Listeners — Concepts”
on page 9-11 for an overview of how
events work

“Events and Listeners — Syntax
and Techniques” on page 9-18 for
the syntax used to define events and
listeners

“Update Graphs Using Events and
Listeners” on page 9-34 for a complete
example that uses events and listeners,
including a property listener

2-10

Developing Classes — Typical Workflow

Developing Classes — Typical Workflow

In this section...

“Formulating a Class” on page 2-11

“Implementing the BankAccount Class” on page 2-13

“Implementing the AccountManager Class” on page 2-15

“Using the BankAccount Class” on page 2-16

Formulating a Class
This example discusses the design and implementation of a simple class. To
design a class that represents a bank account, first determine the elements of
data and the operations that form your abstraction of a bank account. For
example, a bank account has:

• An account number

• An account balance

• A current status (open, closed, etc.)

You need to perform certain operations on a bank account:

• Deposit money

• Withdraw money

You might also want the bank account to send a notice if the balance is too
low and an attempt is made to withdraw money. When this event occurs, the
bank account can broadcast a notice to other entities that are designed to
listen for these notices, such as an account manager program. The account
manager program can take action in response to the event.

In this class, the status of all bank accounts is determined by an account
manager program that looks at the account balance and assigns one of three
values:

• open — Account balance is a positive value

2-11

2 MATLAB® Classes Overview

• overdrawn— Account balance is overdrawn, but by $200 or less.

• closed— Account balance is overdrawn by more than $200.

MATLAB classes store data in properties, implement operations with
methods, and support notifications with events and listeners. Therefore,
the bank account class needs to implement these components, which are
discussed in the following sections.

Class Data
The class needs to define these properties to store the account number,
account balance, and the account status:

• AccountNumber — MATLAB assigns a value to this property when you
create an instance of the class.

• AccountBalance — The class operation of depositing and withdrawing
money assigns values to this property.

• AccountStatus— MATLAB sets this property to an initial value when an
instance of the class is created. It is then changed by methods from the
AccountManager class whenever the value of the AccountBalance falls
below 0.

The first two properties contain information that only the class can change, so
the SetAccess attribute is set to private (only class methods can set these
values).

An external program sets the value of the AccountStatus property. This
program needs access to the property, so the property’s SetAccess attribute is
left as public (any code can access this property value).

Class Operations
There are three operations that the class must be able to perform, so there
needs to be three methods:

• deposit — Update the AccountBalance property when a deposit
transaction occurs

2-12

Developing Classes — Typical Workflow

• withdraw — Update the AccountBalance property when a withdrawal
transaction occurs

• BankAccount— Create an initialized instance of the class

Class Events
The account manager program changes the status of bank accounts having
negative balances. To implement this action, the BankAccount class triggers
an event when a withdrawal results in a negative balance. Therefore, the
triggering of the InsufficientsFunds event occurs from within the withdraw
method.

To define an event, specify a name within an events block. Trigger the event
by a call to the notify handle class method. Because InsufficientsFunds
is not a predefined event, you can name it with any string and trigger it
with any action.

Implementing the BankAccount Class
It makes sense for there to be only one set of data associated with any instance
of a BankAccount class. You would not want independent copies of the
object that could have, for example, different values for the account balance.
Therefore, the BankAccount class should be implemented as a handle class.
All copies of a given handle object refer to the same data.

Commented Example Code
You can display the code for this example in a popup window that contains
detailed comments and links to related sections of the documentation:

BankAccount class

AccountManager class

Open both class files in your editor by clicking this link:

Open in editor

2-13

2 MATLAB® Classes Overview

Class Definition

classdef BankAccount < handle

properties (Hidden)

AccountStatus = 'open';

end

% The following properties can be set only by class methods

properties (SetAccess = private)

AccountNumber

AccountBalance = 0;

end

% Define an event called InsufficientFunds

events

InsufficientFunds

end

methods

function BA = BankAccount(AccountNumber,InitialBalance)

BA.AccountNumber = AccountNumber;

BA.AccountBalance = InitialBalance;

% Calling a static method requires the class name

% addAccount registers the InsufficientFunds listener on this instance

AccountManager.addAccount(BA);

end

function deposit(BA,amt)

BA.AccountBalance = BA.AccountBalance + amt;

if BA.AccountBalance > 0

BA.AccountStatus = 'open';

end

end

function withdraw(BA,amt)

if (strcmp(BA.AccountStatus,'closed')&& BA.AccountBalance < 0)

disp(['Account ',num2str(BA.AccountNumber),' has been closed.'])

return

end

newbal = BA.AccountBalance - amt;

BA.AccountBalance = newbal;

% If a withdrawal results in a negative balance,

% trigger the InsufficientFunds event using notify

if newbal < 0

notify(BA,'InsufficientFunds')

2-14

Developing Classes — Typical Workflow

end

end % withdraw

end % methods

end % classdef

Implementing the AccountManager Class
The AccountManager class provides two methods that implement and
register a listener for the InsufficientsFunds event, which is defined for
all BankAccount objects. The BankAccount class constructor method calls
addAccount to register the listener for the instance being created.

Class Definition

classdef AccountManager
methods (Static)

function assignStatus(BA)
if BA.AccountBalance < 0

if BA.AccountBalance < -200
BA.AccountStatus = 'closed';

else
BA.AccountStatus = 'overdrawn';

end
end

end
function addAccount(BA)
% Call the handle addlistener method
% Object BA is a handle class

addlistener(BA, 'InsufficientFunds', ...
@(src, evnt)AccountManager.assignStatus(src));

end
end

end

Note that the AccountManager class is never instantiated. It serves as a
container for the event listener used by all BankAccount objects.

2-15

2 MATLAB® Classes Overview

Using the BankAccount Class
The BankAccount class, while overly simple, demonstrates how MATLAB
classes behave. For example, create a BankAccount object with a serial
number and an initial deposit of $500:

BA = BankAccount(1234567,500);
BA.AccountNumber
ans =
1234567
BA.AccountBalance
ans =

500
BA.AccountStatus
ans =
open

Now suppose you make a withdrawal of $600, which results in a negative
account balance:

BA.withdraw(600)
BA.AccountBalance
ans =

-100
BA.AccountStatus
ans =
overdrawn

When the $600 withdrawal occurred, the InsufficientsFunds event
was triggered. Because the AccountBalance is not less than –$200, the
AccountStatus was set to overdrawn:

BA.withdraw(200)
BA.AccountBalance
ans =

-300
BA.AccountStatus
ans =
closed

Now the AccountStatus has been set to closed by the listener and further
attempts to make withdrawals are blocked:

2-16

Developing Classes — Typical Workflow

BA.withdraw(100)
Account 1234567 has been closed

If the AccountBalance is returned to a positive value by a deposit, then the
AccountStatus is returned to open and withdrawals are allowed again:

BA.deposit(700)
BA.AccountStatus
ans =
open
BA.withdraw(100)
BA.AccountBalance
ans =

300

2-17

2 MATLAB® Classes Overview

Working with Objects in Functions

In this section...

“Flexible Workflow” on page 2-18

“Performing a Task with an Object” on page 2-18

“Using Object Functionality” on page 2-20

Flexible Workflow
The MATLAB language does not require you to define classes for all the code
you write. You can use objects along with ordinary functions. This section
illustrates the use of an object that implements the basic task of writing text
to a file. Then this object is used in a function to write a text file template
for a class definition.

Performing a Task with an Object
One of the advantages of defining a class instead of simply writing a function
to perform a task is that classes provide better control over related data. For
example, consider the task of writing data to a file. It involves the following
steps:

• Opening a file for writing and saving the file identifier

• Using the file identifier to write data to the file

• Using the file identifier to close the file

The Filewriter Class
This simple class definition illustrates how you might create a class to write
text to a file. It shows how you can use a class definition to advantage by:

• Hiding private data — The caller does not need to manage the file identifier.

• Ensuring only one file identifier is in use at any time — Copies of handle
objects reference the same file identifier as the original.

• Providing automatic file closing when the object is deleted — the object’s
deletemethod takes care of cleanup without needing to be called explicitly.

2-18

Working with Objects in Functions

This class is derived from the handle class so that a Filewriter object is
a handle object. All copies of handle objects reference the same internal
data so there will be only one file identifier in use, even if you make copies
of the object. Also, handle classes define a delete method which is called
automatically when a handle object is destroyed. This example overrides
the delete method to close the file before the file identifier is lost and the
file is left open.

classdef Filewriter < handle
% Property data is private to the class

properties (SetAccess = private, GetAccess = private)
FileID

end % properties

methods
% Construct an object and
% save the file ID

function obj = Filewriter(filename)
obj.FileID = fopen(filename,'a');

end

function writeToFile(obj,text_str)
fprintf(obj.FileID,'%s\n',text_str);

end
% Delete methods are always called before a object
% of the class is destroyed
function delete(obj)

fclose(obj.FileID);
end

end % methods
end % class

Using a Filewriter Object
Note that the user provides a file name to create a Filewriter object, and
then uses the class writeToFilemethod to write text to the file. The following
statements create a file named mynewclass.m and write one line to it. The
clear all command deletes the Filewriter object, which causes its delete
method to be called and the file is closed.

>> fw = Filewriter('mynewclass.m');

2-19

2 MATLAB® Classes Overview

>> fw.writeToFile('classdef mynewclass < handle')
>> clear fw
>> type mynewclass

classdef mynewclass < handle

Using Object Functionality
Filewriter objects provide functionality that you can use from functions
and within other classes. You can create an ordinary function that uses this
object, as the writeClassFile function does below.

This example creates only one simple class template, but another version
might accept a cell array of attribute name/value pairs, method names, and
so on.

function writeClassFile(classname,superclass)
% Use a Filewriter object to write text to a file

fw = Filewriter([classname '.m']);
if nargin > 1

fw.writeToFile(['classdef ' classname ' < ' superclass])
else

fw.writeToFile(['classdef ' classname])
end
fw.writeToFile(' properties ')
fw.writeToFile(' ')
fw.writeToFile(' end % properties')
fw.writeToFile(' ')
fw.writeToFile(' methods ')
fw.writeToFile([' function obj = ' classname '()'])
fw.writeToFile(' ')
fw.writeToFile(' end')
fw.writeToFile(' end % methods')
fw.writeToFile('end % classdef')
delete(fw) % Delete object, which closes file

end

To create a class file template, call writeClassFile with the name of the new
class and its superclass. Use the type command to display the contents of
the file:

2-20

Working with Objects in Functions

>> writeClassFile('myNewClass','handle')
>> type myNewClass

classdef myNewClass < handle
properties

end % properties

methods
function obj = myNewClass()

end
end % methods

end % classdef

More Information on These Techniques
“The Handle Superclass” on page 5-11

“Handle Class Destructor” on page 5-16

2-21

2 MATLAB® Classes Overview

Class to Represent Structured Data

In this section...

“Commented Example Code” on page 2-22

“Objects As Data Structures” on page 2-22

“Structure of the Data” on page 2-23

“The TensileData Class” on page 2-23

“Creating an Instance and Assigning Data” on page 2-24

“Restricting Properties to Specific Values” on page 2-25

“Simplifying the Interface with a Constructor” on page 2-26

“Using a Dependent Property” on page 2-27

“Displaying TensileData Objects” on page 2-28

“Method to Plot Stress vs. Strain” on page 2-29

Commented Example Code
Open class code in a popup window — Use this link if you want to see the final
code for this class annotated with links to descriptive sections.

Open class definition file in the MATLAB editor. — Use this link if you want
to save and modify your version of the class.

To use the class, create a folder named @TensileData and save
TensileData.m to this folder. The parent folder of @TensileData must be
on the MATLAB path.

Objects As Data Structures
This example defines a class for storing data with a specific structure. Using
a consistent structure for data storage makes it easier to create functions that
operate on the data. While a MATLAB struct with field names describing
the particular data element is a useful way to organize data, the use of a class
to define both the data storage (properties) and operations you can perform on
that data (methods) provides advantages, as this example illustrates.

2-22

Class to Represent Structured Data

Concepts on Which This Example Is Based.
For purposes of this example, the data represents tensile stress/strain
measurements, which are used to calculate the elastic modulus of various
materials. In simple terms, stress is the force applied to a material and
strain is the resulting deformation. Their ratio defines a characteristic of
the material. While this is an over simplification of the process, it suffices
for this example.

Structure of the Data
The following table describes the structure of the data.

Data Description

Material Character string identifying the type of
material tested

SampleNumber Number of a particular test sample

Stress Vector of doubles representing the stress
applied to the sample during the test.

Strain Vector of doubles representing the strain at
the corresponding values of the applied stress.

Modulus Double defining an elastic modulus of the
material under test, which is calculated from
the stress and strain data

The TensileData Class
This class is designed to store data, so it defines a property for each of the
data elements. The following class block defines five properties and specifies
their initial values according to the type of data each will contain. Defining
initial values is not required, but can be useful if a property value is not
assigned during object creation.

Note that this example begins with a simple implementation of the class
and builds on this implementation to illustrate how features enhance the
usefulness of the class.

2-23

2 MATLAB® Classes Overview

classdef TensileData
properties

Material = '';
SampleNumber = 0;
Stress
Strain
Modulus = 0;

end
end

Creating an Instance and Assigning Data
Create a TensileData object and assign data to it with the following
statements:

td = TensileData;
td.Material = 'Carbon Steel';
td.SampleNumber = 001;
td.Stress = [2e4 4e4 6e4 8e4];
td.Strain = [.12 .20 .31 .40];
td.Modulus = mean(td.Stress./td.Strain);

Advantages of a Class vs. a Structure Array
Treat the TensileData object (td in the statements above) much as you would
any MATLAB structure array. However, defining a specialized data structure
as a class has advantages over using a general-purpose data structure, like a
MATLAB struct:

• Users cannot accidentally misspell a field name without getting an error.
For example, typing the following:

>>td.Modulis = ...

would simply add a new field to a structure array, but returns an error
when td is an instance of the TensileData class.

• A class is easy to reuse. Once you have defined the class, you can easily
extend it with subclasses that add new properties.

2-24

Class to Represent Structured Data

• A class is easy to identify. A class has a name so that you can identify
objects with the whos and class functions and the Workspace browser. The
class name makes it easy to refer to records with a meaningful name.

• A class can validate individual field values when assigned, including class
or value.

• A class can restrict access to fields, for example, allowing a particular field
to be read, but not changed.

The next section describes how to add type checking and how to restrict
property access in the TensileData class.

Restricting Properties to Specific Values
Restrict the values to which a property can be set by defining a property set
access method. MATLAB software then calls this function whenever a value
is set for a property, including when creating the object.

Defining the Material Property Set Function
The property setmethod restricts the assignment of the Material property to
one of the following strings: aluminum, stainless steel, or carbon steel.

Add this function definition to the methods block.

classdef TensileData

properties

Material = 'carbon steel';

SampleNumber = 0;

Stress

Strain

Modulus

end % properties

methods

function obj = set.Material(obj,material)

if ~(strcmpi(material,'aluminum') ||...

strcmpi(material,'stainless steel') ||...

strcmpi(material,'carbon steel'))

error('Material must be aluminum, stainless steel, or carbon steel')

end

2-25

2 MATLAB® Classes Overview

obj.Material = material;

end % set.Material

end% methods

end% classdef

When an attempt is made to set the Material property, the MATLAB runtime
passes the object and the specified value to the property’s set.Material
function (the obj and the material input arguments). In this case, if the
value does not match the acceptable values, the function returns an error.
Otherwise, the specified value is used to set the property. Only the set
method can directly access the property in the object (without calling the
property set method).

For example:

td = TensileData;
td.Material = 'composite';
Error using TensileData/set.Material
Material must be aluminum, stainless steel, or carbon steel

Simplifying the Interface with a Constructor
You can simplify the interface to the TensileData class by adding a
constructor function that:

• Enables you to pass the data as arguments to the constructor

• Assigns values to properties

The constructor is a method having the same name as the class.

function td = TensileData(material,samplenum,stress,strain)

if nargin > 0 % Support calling with 0 arguments

td.Material = material;

td.SampleNumber = samplenum;

td.Stress = stress;

td.Strain = strain;

end

end % TensileData

2-26

Class to Represent Structured Data

Using the constructor, you can create a TensileData object fully populated
with data using the following statement:

td = TensileData('carbon steel',1,[2e4 4e4 6e4 8e4],[.12 .20 .31 .40]);

Calculating Modulus
Note that the constructor function does not have an input argument for the
value of the Modulus property. This is because the value of the Modulus:

• Is easy to calculate from the Stress and Strain property values

• Needs to change if the value of the Stress or Strain property changes

Therefore, it is better to calculate the value of the Modulus property only when
its value is requested. You can do this with a property get access method,
which is described in the next section.

Using a Dependent Property
TensileData objects do not store the value of the Modulus property; instead
this value is calculated whenever it is requested. This approach enables you
to update the Stress and Strain property data at any time without having
to recalculate the value of the Modulus property.

Modulus Property Get Method
The Modulus property depends on Stress and Strain, so its Dependent
attribute is set to logical true. To do this, create another properties block to
set the Dependent attribute.

Also, because the get.Modulus method calculates and returns the value of
the Modulus property, you should set the property’s SetAccess attribute
to private.

properties (Dependent = true, SetAccess = private)
Modulus

end

Define the property’s get method in a methods block.

2-27

2 MATLAB® Classes Overview

methods
function modulus = get.Modulus(obj)

ind = find(obj.Strain > 0); % Find nonzero strain
modulus = mean(obj.Stress(ind)./obj.Strain(ind));

end % Modulus get method
end % methods

This function simply calculates the average ratio of stress to strain data after
eliminating zeros in the denominator data.

The MATLAB runtime calls the get.Modulus method when the property is
queried. For example,

td = TensileData('carbon steel',1,[2e4 4e4 6e4 8e4],[.12 .20 .31 .40]);

td.Modulus

ans =

1.9005e+005

Modulus Property Set Method
To set the value of a Dependent property, the class must implement a
property set method. There is no need to enable explicit setting of the
Modulus property, but a set method enables you to provide a customized error
message. The Modulus set method references the current property value
and then returns an error:

methods
function obj = set.Modulus(obj,~)
fprintf('%s%d\n','Modulus is: ',obj.Modulus)
error('You cannot set Modulus explicitly');

end % Modulus get function

Displaying TensileData Objects
The TensileData class can implement a disp method that controls what is
displayed when an object of this class is shown on the command line (for
example, by an assignment statement not terminated by a semicolon).

The TensileData disp method displays the value of the Material,
SampleNumber, and Modulus properties. It does not display the Stress and

2-28

Class to Represent Structured Data

Strain property data since these properties contain raw data that is not
easily viewed in the command window. The plot method (described in the
next section) provides a better way to display stress and strain data.

The disp method uses fprintf to display formatted text in the command
window:

methods

function disp(td)

fprintf(1,'Material: %s\nSample Number: %g\nModulus: %1.5g\n',...

td.Material,td.SampleNumber,td.Modulus);

end % disp

end % methods

Method to Plot Stress vs. Strain
It is useful to view a graph of the stress/strain data to determine the behavior
of the material over a range of applied tension. A TensileData object contains
the stress and strain data so it is useful to define a class method that is
designed to plot this data.

The TensileData plot method creates a linear graph of the stress versus
strain data and adds a title and axis labels to produce a standardized graph
for the tensile data records:

function plot(td,varargin)
plot(td.Strain,td.Stress,varargin{:})
title(['Stress/Strain plot for Sample',...

num2str(td.SampleNumber)])
ylabel('Stress (psi)')
xlabel('Strain %')

end % plot

The first argument to this method is a TensileData object, which contains
the data and is used by the MATLAB runtime to dispatch to the TensileData
class plot method and not the built-in plot function.

The variable list of arguments that follow are passed directly to the built-in
plot function from within the method. This enables the TensileData plot
method to behave like the built-in plot function, which allows you to pass
line specifier arguments or property name/value pairs along with the data.

2-29

2 MATLAB® Classes Overview

For example, plotting the following object:

td = TensileData('carbon steel',1,[2e4 4e4 6e4
8e4],[.12 .20 .31 .40]);
plot(td,'-+g','LineWidth',2)

produces this graph.

2-30

Class to Implement Linked Lists

Class to Implement Linked Lists

In this section...

“Commented Example Code” on page 2-31

“Important Concepts Demonstrated” on page 2-31

“dlnode Class Design” on page 2-32

“Creating Doubly Linked Lists” on page 2-33

“Why a Handle Class for Linked Lists?” on page 2-34

“Defining the dlnode Class” on page 2-35

“Specializing the dlnode Class” on page 2-40

Commented Example Code
Open class code in a popup window — Use this link if you want to see the code
for this class annotated with links to descriptive sections.

Open class definition file in the MATLAB editor. — Use this link if you want
to save and modify your version of the class.

To use the class, create a folder named @dlnode and save dlnode.m to
this folder. The parent folder of @dlnode must be on the MATLAB path.
Alternatively, save dlnode.m to a path folder.

Important Concepts Demonstrated
This section discusses concepts that are important in object-oriented design,
and which are illustrated in this example.

Encapsulation
This example shows how classes encapsulate the internal structure used to
implement the class design (a doubly linked lists). Encapsulation conceals the
internal workings of the class from other code and provides a stable interface
to programs that use this class. It also prevents client code from misusing the
class because only class methods can access certain class data.

2-31

2 MATLAB® Classes Overview

Class methods define the operations that you can perform on nodes of this
class. These methods hide the potentially confusing process of inserting and
removing nodes, while at the same time providing an interface that performs
operations simply:

• Creating a node by passing the constructor a data value

• Inserting nodes with respect to other nodes in the list (before or after)

• Removing nodes from the list

See “Defining the dlnode Class” on page 2-35 for the implementation details.

Handle Class Behavior
This example shows an application of a handle class and explains why this
is the best choice for the class. See “Why a Handle Class for Linked Lists?”
on page 2-34.

dlnode Class Design
This example defines a class for creating the nodes of doubly linked lists
in which each node contains:

• Data array

• Link to the next node

• Link to the previous node

Each node has methods that enables the node to be:

• Disconnected from a linked list

• Connected before a specified node in a linked list

• Connected after a specific node in a linked list

Class Properties
The dlnode class implements each node as a handle object with three
properties:

2-32

Class to Implement Linked Lists

• Data — Contains the data for this node

• Next — Contains the handle of the next node in the list (SetAccess =
private)

• Prev — Contains the handle of the previous node in the list (SetAccess
= private)

This diagram shows a three-node list n1, n2, and n3. It also shows how the
nodes reference the next and previous nodes.

n3

Properties
Next
Prev

n2

Properties
Next
Prev

n1

Properties
Next
Prev

n2.Nextn2n2.Prev

Class Methods
The dlnode class implements the following methods:

• dlnode— Constructs a node and assigns the value passed as input to the
Data property

• insertAfter— Inserts this node after the specified node

• insertBefore— Inserts this node before the specified node

• disconnect — Removes this node from the list

• disp— Overloads default disp function so that the Data property displays
on the command line for scalar objects and the dimension of the array
displays for object arrays

• delete— Removes this node from the list before it is destroyed

Creating Doubly Linked Lists
Create a node by passing the node’s data to the dlnode class constructor. For
example, these statements create three nodes with sequential integer data
just for simplicity:

2-33

2 MATLAB® Classes Overview

n1=dlnode(1);
n2=dlnode(2);
n3=dlnode(3);

Build these nodes into a doubly linked list using the class methods:

n2.insertAfter(n1)
n3.insertAfter(n2)

Now the three nodes are linked. The dlnode disp method returns the data for
the node referred to:

n1.Next % Points to n2
ans =
Doubly-linked list node with data:

2
n2.Next.Prev % Points back to n2
ans =
Doubly-linked list node with data:

2
n1.Next.Next % Points to n3
ans =
Doubly-linked list node with data:

3
n3.Prev.Prev % Points to n1
ans =
Doubly-linked list node with data:

1

Why a Handle Class for Linked Lists?

Each node is unique in that no two nodes can be previous to or next to the
same node. Suppose a node object, node, contains in its Next property the
handle of the next node object, node.Next. Similarly, the Prev property
contains the handle of the previous node, node.Prev. Using the three-node
linked list defined in the previous section, you can demonstrate that the
following statements are true:

n1.Next == n2
n2.Prev == n1

2-34

Class to Implement Linked Lists

Now suppose you assign n2 to x:

x = n2;

The following two equalities are then true:

x == n1.Next
x.Prev == n1

But each instance of a node is unique so there is only one node in the list
that can satisfy the conditions of being equal to n1.Next and having a Prev
property that contains a handle to n1. Therefore, x must point to the same
node as n2.

This means there has to be a way for multiple variables to refer to the same
object. The MATLAB handle class provides a means for both x and n2 to refer
to the same node. All instances of the handle class are handles that exhibit
the copy behavior described previously.

Notice that the handle class defines the eq method (use methods('handle')
to list the handle class methods), which enables the use of the == operator
with all handle objects.

See “Comparing Handle and Value Classes” on page 5-2 for more information
on kinds of MATLAB classes.

See “The Handle Superclass” on page 5-11 for more information about the
handle class.

Defining the dlnode Class
The following examples use this doubly linked list (see “Commented Example
Code” on page 2-31 before using this class):

n1 = dlnode(1);
n2 = dlnode(2);
n3 = dlnode(3);
n2.insertAfter(n1)
n3.insertAfter(n2)

2-35

2 MATLAB® Classes Overview

Class Properties
The dlnode class is itself a handle class because it is derived from the handle
class. Note that only class methods can set the Next and Prev properties
(SetAccess = private). Using private set access prevents client code from
performing any incorrect operation with these properties. The dlnode class
defines methods that perform all the operations that are allowed on these
nodes. Here are the property definition blocks:

classdef dlnode < handle
properties

Data
end
properties (SetAccess = private)

Next
Prev

end

Creating a Node Object
To create a node object, you need to specify only the node’s data.

function node = dlnode(Data)
if nargin > 0

node.Data = Data;
end

end

When you add the node to a list, the class methods that perform the insertion
set the Next and Prev properties. See “Inserting Nodes” on page 2-38.

Disconnecting Nodes
The disconnect method removes a node from a list and repairs the list by
reconnecting the appropriate nodes. The insertBefore and insertAfter
methods always call disconnect on the node to insert before attempting to
connect it to a linked list. This ensures the node is in a known state before
assigning it to the Next or Prev property:

function disconnect(node)
if ~isscalar(node)

2-36

Class to Implement Linked Lists

error('Nodes must be scalar')
end
prevNode = node.Prev;
nextNode = node.Next;
if ~isempty(prevNode)

prevNode.Next = nextNode;
end
if ~isempty(nextNode)

nextNode.Prev = prevNode;
end
node.Next = [];
node.Prev = [];

end

For example, suppose you remove n2 from the three-node list discussed above
(n1 n2 n3):

n2.disconnect;

n3

Properties
Next
Prev

n2

Properties
Next
Prev

n1

Properties
Next
Prev

Disconnect the nodes

disconnect removes n2 from the list and repairs the list with the following
steps:

n1 = n2.Prev;
n3 = n2.Next;
if n1 exists, then

n1.Next = n3;
if n3 exists, then

n3.Prev = n1

2-37

2 MATLAB® Classes Overview

Now the list is rejoined because n1 connects to n3 and n3 connects to n1. The
final step is to ensure that n2.Next and n2.Prev are both empty (i.e., n2
is not connected):

% These properties have private SetAccess
% so they can be set only within class methods
n2.Next = [];
n2.Prev = [];

Inserting Nodes
There are two methods for inserting nodes into the list—insertAfter and
insertBefore. These methods perform similar operations, so this section
describes only insertAfter in detail.

methods
function insertAfter(newNode,nodeBefore)

disconnect(newNode);
newNode.Next = nodeBefore.Next;
newNode.Prev = nodeBefore;
if ~isempty(nodeBefore.Next)

nodeBefore.Next.Prev = newNode;
end
nodeBefore.Next = newNode;

end

How insertAfter Works. First insertAfter calls the disconnect method
to ensure that the new node is not connected to any other nodes. Then, it
assigns the newNode Next and Prev properties to the handles of the nodes that
are after and before the newNode location in the list.

For example, suppose you want to insert a new node, nnew, after an existing
node, n1, in a list containing n1 n2.

First, create nnew:

nnew = dlnode(rand(3));

Next, call insertAfter to insert nnew into the list after n1:

nnew.insertAfter(n1)

2-38

Class to Implement Linked Lists

The insertAfter method performs the following steps to insert nnew in the
list between n1 and n2:

% n1.Next is currently n2, set nnew.Next to n1.Next (which is n2)

nnew.Next = n1.Next;

% nnew.Prev must be set to n1

nnew.Prev = n1;

% if n1.Next is not empty, then

% n1.Next is still n2, so n1.Next.Prev is n2.Prev, which is set to nnew

n1.Next.Prev = nnew;

% n1.Next is now set to nnew

n1.Next = nnew;

n4

Properties
Next
Prev

n3

Properties
Next
Prev

n2

Properties
Next
Prev

n1

Properties
Next
Prev

Newly inserted node

Displaying a Node on the Command Line
All objects call a default disp function, which displays information about the
object on the command line (unless display is suppressed with a semicolon).
The default disp function is not useful in this case because the Next and Prev
properties contain other node objects. Therefore, the dlnode class overloads
the default disp function by implementing its own disp class method. This
disp method displays only a text message and the value of the Data property,
when used with scalar objects, and array dimensions when used with object
arrays.

function disp(node)

% DISP Display a link node

if (isscalar(node))

disp('Doubly-linked list node with data:')

disp(node.Data)

else

% If node is an object array, display dimensions

2-39

2 MATLAB® Classes Overview

dims = size(node);

ndims = length(dims);

% Counting down in for loop avoids need to preallocate dimcell

for k = ndims-1:-1:1

dimcell{k} = [num2str(dims(k)) 'x'];

end

dimstr = [dimcell{:} num2str(dims(ndims))];

disp([dimstr ' array of doubly-linked list nodes']);

end

end

Deleting a Node Object
MATLAB destroys a handle object when you reassign or delete its variable
or when there are no longer any references to the object (see “Handle Class
Destructor” on page 5-16 for more information). When you define a delete
method for a handle class, MATLAB calls this method before destroying the
object.

The dlnode class defines a delete method because each dlnode object is a
node in a doubly linked list. If a node object is going to be destroyed, the
delete method must disconnect the node and repair the list before allowing
MATLAB to destroy the node.

The disconnect method already performs the necessary steps, so the delete
method can simply call disconnect:

function delete(node)
disconnect(node);

end

Specializing the dlnode Class
The dlnode class implements a doubly linked list and provides a convenient
starting point for creating more specialized types of linked lists. For example,
suppose you want to create a list in which each node has a name.

Rather than copying the code used to implement the dlnode class, and then
expanding upon it, you can derive a new class from dlnode (i.e., subclass
dlnode) to create a class that has all the features of dlnode and more. And
because dlnode is a handle class, this new class is a handle class too.

2-40

Class to Implement Linked Lists

NamedNode Class Definition
Open class definition file in the MATLAB editor. — Use this link if you want
to save and modify your version of the class.

To use the class, create a folder named @NamedNode and save NamedNode.m to
this folder. The parent folder of @NamedNode.m must be on the MATLAB path.
Alternatively, save NamedNode.m to a path folder.

The following class definition shows how to derive the NamedNode class from
the dlnode class:

classdef NamedNode < dlnode

properties

Name = ''; % property to contain node name

end

methods

function n = NamedNode (name,data)

if nargin == 0 % allow for the no argument case

name = '';

data = [];

end

n = n@dlnode(data); % Initialize a dlnode object

n.Name = name;

end

function disp(node) % Extend the dlnode disp method

if (isscalar(node))

disp(['Node Name: ' node.Name])

disp@dlnode(node); % Call dlnode disp method

else

disp@dlnode(node);

end

end

end % methods

end % classdef

The NamedNode class adds a Name property to store the node name and extends
the disp method defined in the dlnode class.

The constructor calls the class constructor for the dlnode class, and then
assigns a value to the Name property. The NamedNode class defines default

2-41

2 MATLAB® Classes Overview

values for the properties for cases when MATLAB calls the constructor with
no arguments.

See “Basic Structure of Constructor Methods” on page 7-23 for more
information on defining class constructor methods.

Using NamedNode to Create a Doubly Linked List
Use the NamedNode class like the dlnode class, except you specify a name
for each node object. For example:

n(1) = NamedNode('First Node',100);
n(2) = NamedNode('Second Node',200);
n(3) = NamedNode('Third Node',300);

Now use the insert methods inherited from dlnode to build the list:

n(2).insertAfter(n(1))
n(3).insertAfter(n(2))

A single node displays its name and data when you query its properties:

>> n(1).Next
ans =
Node Name: Second Node
Doubly-linked list node with data:

200
>> n(1).Next.Next
ans =
Node Name: Third Node
Doubly-linked list node with data:

300
>> n(3).Prev.Prev
ans =
Node Name: First Node
Doubly-linked list node with data:

100

If you display an array of nodes, the NamedNode disp method displays only
the dimensions of the array:

2-42

Class to Implement Linked Lists

>> n
n =
1x3 array of doubly-linked list nodes

2-43

2 MATLAB® Classes Overview

Class for Graphing Functions

In this section...

“Commented Example Code” on page 2-44

“Class Definition Block” on page 2-44

“Using the topo Class” on page 2-46

“Behavior of the Handle Class” on page 2-47

The class block is the code that starts with the classdef key word and
terminates with the end key word. The following example illustrated a simple
class definition that uses:

• Handle class

• Property set and get functions

• Use of a delete method for the handle object

• Static method syntax

Commented Example Code
You can display this class definition in a separate window that contains links
to related sections in the documentations by clicking this link:

Example with links

Open class definition file in the MATLAB editor. — Use this link if you want
to save and modify your own version of the class.

Class Definition Block
The following code defines a class called topo. It is derived from handle so it
is a handle class, which means it references the data it contains. See “Using
the topo Class” on page 2-46 for information on how this class behaves.

classdef topo < handle

% topo is a subclass of handle

properties

FigHandle % Store figure handle

2-44

Class for Graphing Functions

FofXY % function handle

Lm = [-2*pi 2*pi]; % Initial limits

end % properties

properties (Dependent, SetAccess = private)

Data

end % properties Dependent = true, SetAccess = private

methods

function obj = topo(fnc,limits)

% Constructor assigns property values

obj.FofXY = fnc;

obj.Lm = limits;

end % topo

function set.Lm(obj,lim)

% Lm property set function

if ~(lim(1) < lim(2))

error('Limits must be monotonically increasing')

else

obj.Lm = lim;

end

end % set.Lm

function data = get.Data(obj)

% get function calculates Data

% Use class name to call static method

[x,y] = topo.grid(obj.Lm);

matrix = obj.FofXY(x,y);

data.X = x;

data.Y = y;

data.Matrix = matrix;% Return value of property

end % get.Data

function surflight(obj)

% Graph function as surface

obj.FigHandle = figure;

surfc(obj.Data.X,obj.Data.Y,obj.Data.Matrix,...

'FaceColor',[.8 .8 0],'EdgeColor',[0 .2 0],...

'FaceLighting','phong');

2-45

2 MATLAB® Classes Overview

camlight left; material shiny; grid off

colormap copper

end % surflight method

function delete(obj)

% Delete the figure

h = obj.FigHandle;

if ishandle(h)

delete(h);

else

return

end

end % delete

end % methods

methods (Static = true) % Define static method

function [x,y] = grid(lim)

inc = (lim(2)-lim(1))/35;

[x,y] = meshgrid(lim(1):inc:lim(2));

end % grid

end % methods Static = true

end % topo class

Using the topo Class
See “Commented Example Code” on page 2-44 for information on using this
class.

This class is designed to display a combination surface/contour graph of
mathematical functions of two variables evaluated on a rectangular domain of
x and y. For example, any of the following functions can be evaluated over
the specified domain (note that x and y have the same range of values in this
example just for simplicity).

x.*exp(-x.^2 - y.^2); [-2 2]
sin(x).*sin(y); [-2*pi 2*pi]
sqrt(x.^2 + y.^2); [-2*pi 2*pi]

To create an instance of the class, passing a function handle and a vector of
limits to the constructor. The easiest way to create a function handle for these
functions is to use an anonymous function:

2-46

Class for Graphing Functions

tobj = topo(@(x,y) x.*exp(-x.^2-y.^2),[-2 2]);

The class surflight method uses the object to create a graph of the function.
The actual data required to create the graph is not stored. When the
surflight method accesses the Data property, the property’s get function
performs the evaluation and returns the data in the Data property structure
fields. This data is then plotted. The advantage of not storing the data is
the reduced size of the object.

Behavior of the Handle Class
The topo class is defined as a handle class. This means that instances of this
class are handle objects that reference the underlying data store created by
constructing the object. For example, suppose you create an instance of the
class and create a copy of the object:

tobj = topo(@(x,y) x.*exp(-x.^2-y.^2),[-2 2]);
a = tobj;
surflight(a) % Call class method to create a graph

Now suppose you change the FofXY property so that it contains a function
handle that points to another function:

2-47

2 MATLAB® Classes Overview

tobj.FofXY = @(x,y) y.*exp(-x.^2-y.^2); % now multiply
exp by y instead of x
surflight(a)

Because a is a copy of the handle object tobj, changes to the data referenced
by tobj also change the data referenced by a.

How a Value Class Differs
If topo were a value class, the objects tobj and a would not share data; each
would have its own copy of the property values.

2-48

3

Class Definition—Syntax
Reference

• “Class Files” on page 3-2

• “Class Components” on page 3-5

• “Classdef Block” on page 3-8

• “Properties” on page 3-10

• “Methods and Functions” on page 3-15

• “Events and Listeners” on page 3-21

• “Specifying Attributes” on page 3-23

• “Calling Superclass Methods on Subclass Objects” on page 3-26

• “Representative Class Code” on page 3-29

• “MATLAB Code Analyzer Warnings” on page 3-31

• “Objects In Switch Statements” on page 3-34

• “Using the Editor and Debugger with Classes” on page 3-42

• “Modifying and Reloading Classes” on page 3-43

• “Compatibility with Previous Versions ” on page 3-46

• “Comparing MATLAB with Other OO Languages” on page 3-50

3 Class Definition—Syntax Reference

Class Files

In this section...

“Options for Class Folders” on page 3-2

“Grouping Classes with Package Folders ” on page 3-3

“More Information on Class Folders” on page 3-4

Options for Class Folders
There are two basic ways to specify classes with respect to folders:

• Creating a single, self-contained class definition file in a folder on the
MATLAB path.

• Distributing a class definition to multiple files in an @ folder inside a
path folder.

Creating a Single, Self-Contained Class Definition File
Create a single, self-contained class definition file in a folder on the
MATLAB® path. The name of the file must match the class (and constructor)
name and must have the .m extension. Define the class entirely in this file.
You can put other single-file classes in this folder.

The following diagram shows an example of this folder organization.
pathfolder is a folder on the MATLAB path.

Contains classdef and methods for ClassNameAClassNameA.m

pathfolder

Contains classdef and methods for ClassNameBClassNameB.m
Contains classdef and methods for ClassNameCClassNameC.m

...
A function on the pathordinaryFunction.m

See “Methods in Separate Files” on page 7-8 for more information on using
multiple files to define classes.

3-2

Class Files

Distributing the Class Definition to Mulitple Files
If you use multiple files to define a class, put all the class-definition files
(the file containing the classdef and all class method files) in a single
@ClassName folder. That @-folder must be inside a folder that is on the
MATLAB path. You can define only one class in an @-folder.

pathfolder

ClassNameB.m

Contains classdefClassNameA.m

@ClassNameA

Class method in separate fileclassMethod.m

Contains entire class definition

A path folder can contain classes defined in both @-folders and single files
without an @-folder.

Grouping Classes with Package Folders
The parent folder to a package folder is on the MATLAB path, but the package
folder is not. Package folders (which always begin with a “+” character)
can contain multiple class definitions, package-scoped functions, and other
packages. A package folder defines a new name space in which you can
reuse class names. Use the package name to refer to classes and functions
defined in package folders (for example, packagefld1.ClassNameA(),
packagefld2.packageFunction()).

3-3

3 Class Definition—Syntax Reference

pathfolder

ClassNameB.m

+packagefld1

+packagefld2

Contains classdefClassNameA.m

@ClassNameA

Class method in separate fileclassMethod.m

Contains entire class definition

ClassNameB.m

Defines a new name space

packageFunction.m
ClassNameA.m

More Information on Class Folders
See “Organizing Classes in Folders” on page 4-15 for more information
on class folders and see “Packages Create Namespaces” on page 4-20 for
information on using classes contained in package folders.

See “Methods In Separate Files” on page 3-16 for the syntax used to define
methods external to the classdef file.

3-4

Class Components

Class Components

In this section...

“Class Building Blocks – Defining Class Members” on page 3-5

“More In Depth Information” on page 3-6

Class Building Blocks – Defining Class Members
The basic components in the class definition are blocks describing the whole
class and specific aspects of its definition:

• classdef block contains the class definition within a file that starts with the
classdef keyword and terminates with the end keyword. See “Classdef
Block” on page 3-8 for more syntax information.

classdef (ClassAttributes ClassName) ClassName
...

end

• properties block (one for each unique set of attribute specifications) contains
property definitions, including optional initial values. The properties block
starts with the properties keyword and terminates with the end keyword.
See “Properties” on page 3-10 for more syntax information.

classdef ClassName
properties (PropertyAttributes)

...
end
...

end

• methods block (one for each unique set of attribute specifications) contains
function definitions for the class methods. The methods block starts with
the methods keyword and terminates with the end keyword. See “The
Methods Block” on page 3-15 for more syntax information.

classdef ClassName
methods (MethodAttributes)

...

3-5

3 Class Definition—Syntax Reference

end
...

end

• events block (one for each unique set of attribute specifications) contains
the names of events that this class declares. The events block starts with
the events keyword and terminates with the end keyword. See “Specifying
Events” on page 3-21 for more syntax information.

classdef ClassName
events (EventAttributes)

...
end
...

end

• enumeration block contains the enumeration members defined by the
class. The enumeration block starts with the enumeration keyword and
terminates with the end keyword. See “Using Enumeration Classes” on
page 12-5 for more information.

classdef Boolean < logical
enumeration

No (0)
Yes (1)

end
end

properties, methods, events, and enumeration are keywords only within a
classdef block.

More In Depth Information
“Class Definition” on page 4-4 for more detail on class syntax.

“Defining Properties” on page 6-5 for information on specifying properties.

“How to Use Methods” on page 7-2 for information on specifying methods.

3-6

Class Components

“Events and Listeners — Syntax and Techniques” on page 9-18 for information
on the use of events.

“Enumerations” for information on creating and using enumeration classes.

Attribute Tables for a list of all attributes.

3-7

3 Class Definition—Syntax Reference

Classdef Block

In this section...

“Specifying Attributes and Superclasses” on page 3-8

“Assigning Class Attributes” on page 3-8

“Specifying Superclasses” on page 3-9

Specifying Attributes and Superclasses
The classdef block contains the class definition. The classdef line is where
you specify:

• Class attributes

• Superclasses

The classdef block contains the properties, methods, and events subblocks.

Assigning Class Attributes
Class attributes modify class behavior in some way. Assign values to class
attributes only when you want to change their default value.

No change to default attribute values:

classdef class_name

...

end

One or more attribute values assigned:

classdef (attribute1 = value,...)
...

end

See “Class Attributes” on page 4-6 for a list of attributes and a discussion of
the behaviors they control.

3-8

Classdef Block

Specifying Superclasses
To define a class in terms of one or more other classes by specifying the
superclasses on the classdef line:

classdef class_name < superclass_name
...

end

See “Creating Subclasses — Syntax and Techniques” on page 10-7 for more
information.

3-9

3 Class Definition—Syntax Reference

Properties

In this section...

“What You Can Define” on page 3-10

“Initializing Property Values” on page 3-10

“Defining Default Values” on page 3-11

“Assigning Property Values from the Constructor” on page 3-11

“Initializing Properties to Unique Values” on page 3-12

“Property Attributes” on page 3-12

“Property Access Methods” on page 3-13

“Referencing Object Properties Using Variables” on page 3-13

What You Can Define
You can control aspects of property definitions in the following ways:

• Specifying a default value for each property individually

• Assigning attribute values on a per block basis

• Defining methods that execute when the property is set or queried

Note Always use case sensitive property names in your MATLAB code.

Initializing Property Values

There are two basic approaches to initializing property values:

• In the property definition — MATLAB evaluates the expression only once
and assigns the same value to the property of every instance. See “Defining
Default Values” on page 3-11.

• In the class constructor — MATLAB evaluates the assignment expression
for each instance, which ensures that each instance has a unique value.
See “Assigning Property Values from the Constructor” on page 3-11.

3-10

Properties

Defining Default Values
Within a properties block, you can control an individual property’s default
value. Default values can be constant values or MATLAB expressions.
Expressions cannot reference variables. For example:

classdef class_name
properties

PropertyName % No default value assigned
PropertyName = 'some text';
PropertyName = sin(pi/12); % Expression returns default value

end
end

Evaluation of property default values occurs only when the value is first
needed, and only once when MATLAB first initializes the class. MATLAB
does not reevaluate the expression each time you create a class instance.

See “Expressions in Class Definitions” on page 4-9 for more information on
how MATLAB evaluates expressions that you use to assign property default
values.

MATLAB sets property values not specified in the class definition to empty
([]).

Assigning Property Values from the Constructor
To assign values to a property from within the class constructor, reference the
object that the constructor returns (the output variable obj):

classdef MyClass
properties

PropertyOne
end
methods

function obj = MyClass(intval)
obj.PropertyOne = intval;

end
end

end

3-11

3 Class Definition—Syntax Reference

When you assign an object property from the class constructor, MATLAB
evaluates the assignment statement for each instance created. Assign
property values in the constructor if you want each object to contain a unique
instance of a handle object.

See “Referencing the Object in a Constructor” on page 7-18 for more
information on constructor methods.

Initializing Properties to Unique Values
MATLAB assigns properties to the specified default values only once when
MATLAB loads the class definition. Therefore, if you initialize a property
value with a handle-class constructor, MATLAB calls this constructor only
once and every instance references the same handle object. If you want a
property value to be initialized to a new instance of a handle object each time
you create an object, assign the property value in the constructor.

Property Attributes
All properties have attributes that modify certain aspects of the property’s
behavior. Specified attributes apply to all properties in a particular properties
block. For example:

classdef class_name

properties

PropertyName % No default value assigned

PropertyName = sin(pi/12); % Expression returns default value

end

properties (SetAccess = private, GetAccess = private)

Stress

Strain

end

end

In this case, only methods in the same class definition can modify and
query the Stress and Strain properties. This restriction exists because the
class defines these properties in a properties block with SetAccess and
GetAccess attributes set to private.

3-12

Properties

“Table of Property Attributes” on page 6-8 provides a description of property
attributes.

Property Access Methods
You can define methods that MATLAB calls whenever setting or querying a
property value. Define property set access or get access methods in methods
blocks that specify no attributes and have the following syntax:

methods
function value = get.PropertyName(object)

...
end

function obj = set.PropertyName(obj,value)
...

end
end

MATLAB does not call the property set access method when assigning the
default value specified in the property’s definition block.

If a handle class defines the property, the set access method does not need to
return the modified object.

“Property Access Methods” on page 6-14 for more information on these
methods.

“Defining Properties” on page 6-5 for information on properties.

Referencing Object Properties Using Variables
MATLAB can resolve a property name from a char variable using an
expression of the form:

object.(PropertyNameVar)

where PropertyNameVar is a variable containing the name of a valid object
property. Use this syntax when passing property names as arguments:

PropName = 'KeyType';

3-13

3 Class Definition—Syntax Reference

function o = getPropValue(obj,PropName)
...
o = obj.(PropName); % Returns value of KeyType property
...

end

3-14

Methods and Functions

Methods and Functions

In this section...

“The Methods Block” on page 3-15

“Method Calling Syntax” on page 3-16

“Methods In Separate Files” on page 3-16

“Private Methods” on page 3-18

“More Detailed Information On Methods” on page 3-18

“Class-Related Functions” on page 3-19

“Overloading Functions and Operators” on page 3-19

The Methods Block
Define methods as MATLAB functions within a methods block, inside the
classdef block. The constructor method has the same name as the class and
returns an object. You can assign values to properties in the class constructor.
Terminate all method functions with an end statement.

classdef ClassName

methods

function obj = ClassName(arg1,arg2,...)

obj.Prop1 = arg1;

...

end

function normal_method(obj,arg1,...)

...

end

end

methods (Static = true)

function static_method(arg1,...)

...

end

end

end

3-15

3 Class Definition—Syntax Reference

Method Calling Syntax
MATLAB differs from languages like C++ and Java™ in that there is no
special hidden class instance passed to all methods. You must pass an object
of the class explicitly to the method. The left most argument does not need to
be the class instance, and the argument list can have multiple objects.

See “Determining Which Method Is Invoked” on page 7-9 for more information.

See also“Static Methods” on page 7-25 for information on methods that do
not require instances of their class.

Note Always use case sensitive method names in your MATLAB code.

Methods In Separate Files
You can define class methods in files that are separate from the class
definition file, with certain exceptions (see “Methods That Must Be In the
classdef File” on page 3-17). To use multiple files for a class definition, put the
class files in a folder having a name beginning with the @ character followed
by the name of the class. Ensure that the parent folder of the @-folder is on the
MATLAB path, or, if the @-folder is contained in one or more package folders,
then the top-level package folder must be on the MATLAB path.

For example, the folder @MyClass must contain the file MyClass.m (which
contains the classdef block) and can contain other methods and function
defined in files having a .m extension. For example, the folder @MyClass
might contain a number of files:

@MyClass/MyClass.m
@MyClass/subsref.m
@MyClass/subsasgn.m
@MyClass/horzcat.m
@MyClass/vertcat.m
@MyClass/myFunc.m

3-16

Methods and Functions

Define the Method Like Any Function
To define a method in a separate file in the class @-folder, create the function
in a separate file, but do not use a method block in that file. Name the file
with the function name, as with any function.

Methods That Must Be In the classdef File
You must put the following methods in the classdef file, not in separate files:

• Class constructor

• Delete method

• All functions that use dots in their names, including:

- Converter methods that convert to classes contained in packages, which
must use the package name as part of the class name.

- Property set and get access methods (“Property Access Methods” on page
6-14)

Specifying Method Attributes in classdef File
If you specify method attributes for a method that you define in a separate
file, include the method signature in a methods block in the classdef block.
For example, the following code shows a method with Access set to private
in the methods block. The method implementation resides in a separate file.
Do not include the function or end keywords in the methods block, just the
function signature showing input and output arguments.

classdef ClassName

% In a methods block, set the method attributes

% and add the function signature

methods (Access = private)

output = myFunc(obj,arg1,arg2)

end

end

In a file named myFunc.m, in the @ClassName folder, define the function:

function output = myFunc(obj,arg1,arg2)
...

end

3-17

3 Class Definition—Syntax Reference

Include the method signature in the file with the classdef block only if you
want to specify attributes for that method. Otherwise, you can implement the
method as a function in a separate file in the @-folder.

Defining Static Methods in Separate Files
To create a static method, set the function’s Static attribute to true. List
any static methods that you define in separate files in the @-class folder. List
these methods in the static methods block in the classdef file. Include the
input and output arguments with the function name. For example:

classdef ClassName
...

methods (Static)
output = staticFunc1(arg1,arg2)
staticFunc2

end

You would then define the functions in separate files using the same function
signature. For example:

function output = staticFunc1(arg1,arg2)
...

end

Using Separate Files for Methods
The example, “Update Graphs Using Events and Listeners” on page 9-34
uses multiple files for class definition.

Private Methods
Use the Access method attribute to create a private method. You do not
need to use a private folder.

See “Method Attributes” on page 7-5 for a list of method attributes.

More Detailed Information On Methods
See “How to Use Methods” on page 7-2 for more information about methods.

3-18

Methods and Functions

Class-Related Functions
You can define functions that are not class methods in the file that contains
the class definition (classdef). Define local functions outside of the classdef
- end block, but in the same file as the class definition. Functions defined in
classdef files work like local functions. You can call these functions from
anywhere in the same file, but they are not visible outside of the file in which
you define them.

Local functions in classdef files are useful for utility functions that you use
only within that file. These functions can take or return arguments that
are instances of the class but, it is not necessary, as in the case of ordinary
methods. For example, the following code defines myUtilityFcn outside the
classdef block:

classdef MyClass

properties

PropName

end

methods

function obj = MyClass(arg1)

obj.PropName = arg1;

end

end % methods

end % classdef

function myUtilityFcn

...

end

You also can create package functions, which require you to use the package
name when calling these functions. See “Packages Create Namespaces” on
page 4-20 for more information on packages

Overloading Functions and Operators
Overload MATLAB functions for your class by defining a class method with
the same name as the function you want to overload. MATLAB dispatches to
the class method when the function is called with an instance of the class. See
“Overloading Functions for Your Class” on page 7-27 for more information.

3-19

3 Class Definition—Syntax Reference

You can also overload MATLAB arithmetic, logical, relational, and indexing
operators by defining class methods with the appropriate names. See
“Implementing Operators for Your Class” on page 15-35 for a list of the
functions to overload.

See the handle class for a list of operations defined for that class, which are
inherited by all classes deriving from handle.

3-20

Events and Listeners

Events and Listeners

In this section...

“Specifying Events” on page 3-21

“Listening for Events” on page 3-21

Specifying Events
To define an event, you declare a name for the event in the events block.
Then one of the class methods triggers the event using the notify method,
which is method inherited from the handle class. Only classes derived from
the handle class can define events.

For example, the following class:

• Defines an event named StateChange

• Triggers the event using the inherited notify method.

classdef class_name < handle % Subclass handle

events % Define an event called StateChange

StateChange

end

...

methods

function upDateGUI(obj)

...

% Broadcast notice that StateChange event has occurred

notify(obj,'StateChange');

end

end

end

Listening for Events
Any number of objects can be listening for the StateChange event to occur.
When notify executes, MATLAB calls all registered listener callbacks and
passes the handle of the object generating the event and an event structure to

3-21

3 Class Definition—Syntax Reference

these functions. To register a listener callback, use the addlistener method
of the handle class.

addlistener(event_obj,'StateChange',@myCallback)

See “Events” for more information on using events and listeners.

3-22

Specifying Attributes

Specifying Attributes

In this section...

“Attribute Syntax” on page 3-23

“Attribute Descriptions” on page 3-23

“Attribute Values” on page 3-24

“Simpler Syntax for true/false Attributes” on page 3-24

Attribute Syntax
For a quick reference to all attributes, see Attribute Tables.

Attributes modify the behavior of classes and class components (properties,
methods, and events). Attributes enable you to define useful behaviors
without writing complicated code. For example, you can create a read-only
property by setting its SetAccess attribute to private, but leaving its
GetAccess attribute set to public (the default):

properties (SetAccess = private)
ScreenSize = getScreenSize;

end

All class definition blocks (classdef, properties, methods, and events)
support specific attributes and all attributes have default values. Specify
attribute values only in cases where you want to change from the default
value to another predefined value.

Note Specify the value of a particular attribute only once in any component
block.

Attribute Descriptions
For lists of supported attributes, see:

• “Class Attributes” on page 4-6

• “Property Attributes” on page 6-8

3-23

3 Class Definition—Syntax Reference

• “Method Attributes” on page 7-5

• “Event Attributes” on page 9-16

Attribute Values
When you specify attribute values, these values affect all the components
defined within the definition block. For example, the following property
definition blocks set the:

• AccountBalance property SetObservable attribute to true

• SSNumber and CreditCardNumber properties’ Hidden attribute to true
and SetAccess attribute to private.

Defining properties with different attribute settings requires multiple
properties blocks.

properties (SetObservable = true)

AccountBalance

end

properties (SetAccess = private, Hidden = true)

SSNumber

CreditCardNumber

end

Specified multiple attributes in a comma-separated list, as shown in the
previous example.

When specifying class attributes, place the attribute list directly after the
classdef keyword:

classdef (Sealed = true) myclass
...

end

Simpler Syntax for true/false Attributes
You can use a simpler syntax for attributes whose values are true or false—
the attribute name alone implies true and adding the not operator (~) to the
name implies false. For example:

methods (Static)

3-24

Specifying Attributes

...
end

is the same as:

methods (Static = true)
...

end

Use the not operator before an attribute name to define it as false:

methods (~Static)
...

end

is the same as:

methods (Static = false)
...

end

All attributes that take a logical value (that is, true or false) have a default
value of false. Therefore, specify an attribute only if you want to set it to
true.

3-25

3 Class Definition—Syntax Reference

Calling Superclass Methods on Subclass Objects

In this section...

“Calling a Superclass Constructor” on page 3-26

“Calling Superclass Methods” on page 3-27

Calling a Superclass Constructor
If you create a subclass object, MATLAB calls the superclass constructor to
initialize the superclass part of the subclass object. By default, MATLAB calls
the superclass constructor without arguments. If you want the superclass
constructor called with specific arguments, explicitly call the superclass
constructor from the subclass constructor. The call to the superclass
constructor must come before any other references to the object.

The syntax for calling the superclass constructor uses an @ symbol:

classdef MySub < MySuperClass
methods

function obj = MySub(arg1,arg2,...)
obj = obj@MySuperClass(SuperClassArguments);

...
end % MySub

end % methods
end % classdef

Interpret this syntax as meaning, the MySub object arrives at the
MySuperClass constructor , which constructs the MySuperClass part of the
object using the specified arguments.

3-26

Calling Superclass Methods on Subclass Objects

Object returned
from superclass

Object being
constructed

obj = obj@MySuperClass(SuperClassArguments);obj = obj@MySuperClass(SuperClassArguments);

Name of superclass

Superclass constructor
arugment list

See “Constructing Subclasses” on page 7-20 for more information.

Calling Superclass Methods
You can call a superclass method from a subclass method if both methods
have the same name. From the subclass, reference the method name and
superclass name with the @ symbol. See “Modifying Superclass Methods” on
page 10-14 for more information on when to call superclass methods.

For example, a subclass can call a superclass disp method to implement
the display of the superclass part of the object, and then add code to display
the subclass part:

classdef MySub < MySuperClass
methods

function disp(obj)
disp@MySuperClass(obj)

...
end % disp

end % methods
end % classdef

This diagram illustrates how to call the superMethod defined at
MySuperClass.

3-27

3 Class Definition—Syntax Reference

Object passed to the
 superclass method

superMethod@MySuperClass(obj)superMethod@MySuperClass(obj)

Superclass name

 Superclass method

3-28

Representative Class Code

Representative Class Code

Example of Class Definition Syntax
The following code shows the syntax of a typical class definition. This
example is not a functioning class because it references functions that it does
not implement. The purpose of this section is to illustrate various syntactic
constructions.

classdef (ConstructOnLoad) Employee < handle

% Class help goes here

properties

Name % Property help goes here

end

properties (Dependent)

JobTitle

end

properties (Transient)

OfficeNumber

end

properties (SetAccess = protected, GetAccess = private)

EmpNumber

end

events

BackgroundAlert

end

methods

function Eobj = Employee(name)

% Method help here

Eobj.Name = name;

Eobj.EmpNumber = employee.getEmpNumber;

end

function result = backgroundCheck(obj)

result = queryGovDB(obj.Name,obj.SSNumber);

3-29

3 Class Definition—Syntax Reference

if result == false

notify(obj,'BackgroundAlert');

end

end

function jobt = get.JobTitle(obj)

jobt = currentJT(obj.EmpNumber);

end

function set.OfficeNumber(obj,setvalue)

if isInUse(setvalue)

error('Not available')

else

obj.OfficeNumber = setvalue;

end

end

end

methods (Static)

function num = getEmpNumber

num = queryDB('LastEmpNumber') + 1;

end

end

end

3-30

MATLAB® Code Analyzer Warnings

MATLAB Code Analyzer Warnings

In this section...

“Syntax Warnings and Property Names” on page 3-31

“Warnings Caused by Variable/Property Name Conflicts” on page 3-31

“Exception to Variable/Property Name Rule” on page 3-32

Syntax Warnings and Property Names
The MATLAB Code Analyzer helps you optimize your code and avoid syntax
errors while you write code. It is useful to understand some of the rules
that the Code Analyzer applies in its analysis of class definition code. This
understanding helps you avoid situations in which MATLAB allows code
that is undesirable.

Warnings Caused by Variable/Property Name
Conflicts
The Code Analyzer warns about the use of variable names in methods that
match the names of properties. For example, suppose a class defines a
property called EmployeeName and in this class, there is a method that uses
EmployeeName as a variable:

properties
EmployeeName

end
methods

function someMethod(obj,n)
EmployeeName = n;

end
end

While the previous function is legal MATLAB code, it results in Code Analyzer
warnings for two reasons:

• The value of EmployeeName is never used

• EmployeeName is the name of a property that is used as a variable

3-31

3 Class Definition—Syntax Reference

If the function someMethod contained the following statement instead:

obj.EmployeeName = n;

The Code Analyzer generates no warnings.

If you change someMethod to:

function EN = someMethod(obj)
EN = EmployeeName;

end

The Code Analyzer returns only one warning, suggesting that you might
actually want to refer to the EmployeeName property.

While this version of someMethod is legal MATLAB code, it is confusing to
give a property the same name as a function. Therefore, the Code Analyzer
provides a warning suggesting that you might have intended the statement
to be:

EN = obj.EmployeeName;

Exception to Variable/Property Name Rule
Suppose you define a method that returns a value of a property and uses the
name of the property for the output variable name. For example:

function EmployeeName = someMethod(obj)
EmployeeName = obj.EmployeeName;

end

The Code Analyzer does not warn when a variable name is the same as a
property name when the variable is:

• An input or output variable

• A global or persistent variable

In these particular cases, the Code Analyzer does not warn you that you are
using a variable name that is also a property name. Therefore, a coding error
like the following:

3-32

MATLAB® Code Analyzer Warnings

function EmployeeName = someMethod(obj)
EmployeeName = EmployeeName; % Forgot to include obj.

end

does not trigger a warning from the Code Analyzer.

3-33

3 Class Definition—Syntax Reference

Objects In Switch Statements

In this section...

“Evaluating the Switch Statement” on page 3-34

“Defining the eq Method” on page 3-36

“Enumerations in Switch Statements” on page 3-38

“Functions to Test Objects” on page 3-40

“Functions to Query Class Members” on page 3-41

Evaluating the Switch Statement
MATLAB enables you to use objects in switch and case statements if the
object’s class defines an eq method. The eq method implements the ==
operation on objects of that class.

For objects, switch_expression == case_expression defines how MATLAB
evaluates switch and cases statements.

Note You do not need to define eq methods for enumeration classes. See
“Enumerations in Switch Statements” on page 3-38.

Handle Objects in Switch Statements
All classes derived from the handle class inherit an eq method. The
expression,

h1 == h2

is true if h1 and h2 are handles for the same object.

For example, the BasicHandle class derives from handle:

classdef BasicHandle < handle
properties

Prop1
end

3-34

Objects In Switch Statements

methods
function obj = BasicHandle(val)

if nargin > 0
obj.Prop1 = val;

end
end

end
end

Create a BasicHandle object and use it in a switch statement:

h1 = BasicHandle('Handle Object');
h2 = h1;
switch h1

case h2
disp('h2 is selected')

otherwise
disp('h2 not selected')

end

The result is:

h2 is selected

Object Must Be Scalar
The switch statements work only with scalar objects. For example:

h1(1) = BasicHandle('Handle Object');
h1(2) = BasicHandle('Handle Object');
h1(3) = BasicHandle('Handle Object');
h2 = h1;
switch h1

case h2
disp('h2 is selected')

otherwise
disp('h2 not selected')

end
SWITCH expression must be a scalar or string constant.

3-35

3 Class Definition—Syntax Reference

In this case, h1 is not scalar. Use isscalar to determine if an object is scalar
before entering a switch statement.

Defining the eq Method
To enable the use of value-class objects in switch statements, implement an
eq method for the class. Use the eq method to determine what constitutes
equality of two object of the class.

Behave Like a Built-in Type
Some MATLAB functions also use the built-in == operator in their
implementation. Therefore, your implementation of eq should be replaceable
with the built-in eq to enable objects of your class work like built-in types
in MATLAB code.

Design of eq
Implement the eq method to returns a logical array representing the result
of the == comparison.

For example, the SwitchOnVer class implements an eq method that returns
true for the == operation if the value of the Version property is the same for
both objects. In addition, eq works with arrays the same way as the built-in
eq. For the following expression:

obj1 == obj2

The eq method works like this:

• If both obj1 and obj2 are scalar, eq returns a scalar value.

• If both obj1 and obj2 are nonscalar arrays, then these arrays must have
the same dimensions, and eq returns an array of the same size.

• If one input argument is scalar and the other is a nonscalar array, then eq
treats the scalar object as if it is an array having the same dimensions as
the nonscalar array.

3-36

Objects In Switch Statements

Implementation of eq
Here is a class that implements an eq method. Ensure your implementation
contains appropriate error checking for the intended use.

classdef SwitchOnVer
properties

Version
end
methods

function obj = SwitchOnVer(ver)
if nargin > 0

obj.Version = ver;
end

end
function bol = eq(obj1,obj2)

if ~strcmp(class(obj1),class(obj2))
error('Objects are not of the same class')

end
s1 = numel(obj1);
s2 = numel(obj2);
if s1 == s2

bol = false(size(obj1));
for k=1:s1

if obj1(k).Version == obj2(k).Version
bol(k) = true;

else
bol(k) = false;

end
end

elseif s1 == 1
bol = scalarExpEq(obj2,obj1);

elseif s2 == 1
bol = scalarExpEq(obj1,obj2);

else
error('Dimension missmatch')

end
function ret = scalarExpEq(ns,s)

% ns is nonscalar array
% s is scalar array
ret = false(size(ns));

3-37

3 Class Definition—Syntax Reference

n = numel(ns);
for kk=1:n

if ns(kk).Version == s.Version
ret(kk) = true;

else
ret(kk) = false;

end
end

end
end

end
end

Use SwitchOnVer objects in switch statements:

% Create known versions of objects
ov1 = SwitchOnVer(1.0);
ov2 = SwitchOnVer(2.0);
ov3 = SwitchOnVer(3.0);
...

...
if isscalar(objIn)

switch(objIn)
case ov1

disp('This is version 1.0')
case ov2

disp('This is version 2.0')
case ov3

disp('This is version 3.0')
otherwise

disp('There is no version')
end

else
error('Input object must be scalar')

end

Enumerations in Switch Statements
MATLAB enables you to use enumerations in switch statements without
requiring an explicitly defined eq method for the enumeration class.

3-38

Objects In Switch Statements

For example, the WeeklyPlanner class defines enumerations for five days of
the week. The switch/case statements in the todaySchedule static method
dispatch on the enumeration member corresponding to the current day of
the week. The date and datestr functions return a character string with
the name of the current day.

classdef WeeklyPlanner
enumeration

Monday, Tuesday, Wednesday, Thursday, Friday
end
methods (Static)

function todaySchedule
dayName = datestr(date,'dddd');
dayEnum = WeeklyPlanner.(dayName);
switch dayEnum

case WeeklyPlanner.Monday
disp('Monday schedule')

case WeeklyPlanner.Tuesday
disp('Tuesday schedule')

case WeeklyPlanner.Wednesday
disp('Wednesday schedule')

case WeeklyPlanner.Thursday
disp('Thursday schedule')

case WeeklyPlanner.Friday
disp('Friday schedule')

end
end

end
end

Call todaySchedule to display today’s schedule:

WeeklyPlanner.todaySchedule

Enumerations Derived from Built-In Types
Enumeration classes that derived from built-in types inherit the superclass
eq method. For example, the FlowRate class derives from int32:

classdef FlowRate < int32

3-39

3 Class Definition—Syntax Reference

enumeration
Low (10)
Medium (50)
High (100)

end
end

The switchEnum function switches on the input argument, which can be a
FlowRate enumeration value.

function switchEnum(inpt)
switch inpt

case 10
disp('Flow = 10 cfm')

case 50
disp('Flow = 50 cfm')

case 100
disp('Flow = 100 cfm')

end
end

Call switchEnum with an enumerated value:

switchEnum(FlowRate.Medium)

Flow = 50 cfm

Functions to Test Objects
These functions provide logical tests, which are useful when using objects
in ordinary functions.

Function Description

isa Determine whether an argument is an object of specific
class.

isequal Determine if two objects are equal, which means
both objects are of the same class and size and their
corresponding property values are equal.

isobject Determine whether input is a MATLAB object

3-40

Objects In Switch Statements

Functions to Query Class Members
These functions provide information about object class members.

Function Description

class Return class of object.

enumeration Display class enumeration members and names.

events List event names defined by the class.

methods List methods implemented by the class.

methodsview List methods in separate window.

properties List class property names.

3-41

3 Class Definition—Syntax Reference

Using the Editor and Debugger with Classes

Referring to Class Files
Define classes in files just like scripts and functions. To use the editor or
debugger with a class file, use the full class name. For example, suppose the
file for a class, myclass.m is in the following location:

+PackFld1/+PackFld2/@myclass/myclass.m

To open myclass.m in the MATLAB editor, you could reference the file using
dot-separated package names:

edit PackFld1.PackFld2.myclass

You could also use path notation:

edit +PackFld1/+PackFld2/@myclass/myclass

If myclass.m is not in an @-folder, then enter:

edit +PackFld1/+PackFld2/myclass

To refer to functions inside a package folder, use dot or path separators:

edit PackFld1.PackFld2.packFunction
edit +PackFld1/+PackFld2/packFunction

To refer to a function defined in its own file inside of a class @-folder, use:

edit +PackFld1/+PackFld2/@myclass/myMethod

Debugging Class Files
For debugging, dbstop accepts any of the file specifications used by the edit
command.

See “Modifying and Reloading Classes” on page 3-43 for information about
clearing class.

3-42

Modifying and Reloading Classes

Modifying and Reloading Classes

Ensuring MATLAB Uses Your Changes
There is only one class definition for a given class in MATLAB at any given
time. When you create an instance of a class, MATLAB loads the class
definition. So as long as instances of that class exist, MATLAB does not
reload the class definition.

Clear Class Instances
When you modify a class definition, the current MATLAB session continues to
use the original class definition until you clear all objects of that class. For
example, if obj1 and obj2 are instances of a class for which you have modified
the class definition, clear those objects so MATLAB can use your changes. Use
the clear command to remove only those instances:

clear obj1 obj2

Modifying a class definition includes doing any of the following:

• Changing class member attributes

• Adding, deleting, or changing the names of properties, methods, or events

• Changing class inheritance

• Changing the definition of a superclass (requires you to clear subclass
objects)

If there are no class instances, MATLAB applies changes in the code
immediately. If there are instances, you must clear those objects before
MATLAB applies your changes.

See “Metaclass Object Lifecycle” on page 14-4 for related information.

Clear Classes
When you issue the clear classes command, MATLAB clears:

• The current workspace of all variables

3-43

3 Class Definition—Syntax Reference

• All functions, which can have persistent variables holding class instances
(unless the function is locked)

• All classes that are not instantiated

However, it is possible that your MATLAB session is holding instances of the
class that the clear classes command does not clear. For example, suppose
you change the definition of MyClass after saving an instance of this class in
a Handle Graphics® object’s UserData property:

obj = MyClass; % User-defined class that you are editing

h = uicontrol('Style','pushbutton');

set(h,'UserData',obj)

clear classes

Warning: Objects of 'MyClass' class exist. Cannot clear this class or any of its

super-classes.

MATLAB issues a warning stating that it cannot apply your changes because
it cannot clear the class. Clear the instance of MyClass before calling clear
classes. For example, you can use the close all command to remove the
object or reset the UserData property to another value:

% First, get the handle of the uicontrol, which was cleared
h = findobj('Type','uicontrol','Style','pushbutton');
set(h,'UserData',[])

Now you can issue the clear classes command.

Places That Can Hold Instances
You can remove class instances from your workspace using the clear obj...
command. However, as the preceding example shows, objects can be held in
various ways. Clear all instances before MATLAB applies your new class
definition.

Here are some suggestions for finding and clearing class instances:

Persistent Variables. Persistent variables can hold objects. Clear persistent
variables using clear functions. If the function containing the persistent
variable is locked, then unlock the function (using munlock) before clearing it.

3-44

Modifying and Reloading Classes

Locked Functions. Functions can contain objects in their workspace. If the
function is locked (with mlock), unlock it (using munlock) so that MATLAB
can clear the instance. Use clear functions once you have unlocked the
function.

Default Property Values. When you specify a default value in a properties
definition block, MATLAB evaluates the expression that defines the default
value once when loading the class. Clear this value using the clear classes
command.

Constant Properties. When you define a constant property (property
Constant attribute set to true) whose value is an object, MATLAB creates
the instance when loading the class. Clear this instance using the clear
classes command.

Handle Graphics Objects. Handle Graphics objects can contain class
instances in UserData properties, in Application Data, or created in callback
functions. Issuing the close all command removes the Handle Graphics
objects, unless these objects enable hidden handles. See the close command
for more information. You can remove Application Data using the rmappdata
function.

Simulink® Models. Models can contain class instances. Use close_system
to close the model so that MATLAB can apply your changes.

3-45

3 Class Definition—Syntax Reference

Compatibility with Previous Versions

In this section...

“New Class-Definition Syntax Introduced with MATLAB Software Version
7.6” on page 3-46

“Changes to Class Constructors” on page 3-47

“New Features Introduced with Version 7.6” on page 3-48

“Examples of Old and New” on page 3-48

New Class-Definition Syntax Introduced with
MATLAB Software Version 7.6
MATLAB software Version 7.6 introduces a new syntax for defining classes.
This new syntax includes:

• The classdef keyword begins a block of class-definitions code. An end
statement terminates the class definition.

• Within the classdef code block, properties, methods, and events are also
keywords delineating where you define the respective class members.

Cannot Mix Class Hierarchy
It is not possible to create class hierarchies that mix classes defined before
Version 7.6 and current class definitions that use classdef. Therefore, you
cannot subclass an old class to create a version of the new class.

Only One @-Folder per Class
For classes defined using the new classdef keyword, an @-folder shadows
all @-folders that occur after it on the MATLAB path. Classes defined in
@-folders must locate all class files in that single folder. However, classes
defined in @-folders continue to take precedence over functions and scripts
having the same name, even those function and scripts that come before them
on the path.

3-46

Compatibility with Previous Versions

Private Methods
You do not need to define private folders in class folders in Version 7.6. You
can set the method’s Access attribute to private instead.

Changes to Class Constructors
Class constructor methods have two major differences. Class constructors:

• Do not use the class function.

• Must call the superclass constructor only if you want to pass arguments
to its constructor. Otherwise, no call to the superclass constructor is
necessary.

Example of Old and New Syntax
Compare the following two Stock constructor methods. The Stock class
is a subclass of the Asset class, which requires arguments passed to its
constructor.

Constructor Function Before Version 7.6

function s = Stock(description,num_shares,share_price)
s.NumShares = num_shares;
s.SharePrice = share_price;

% Construct Asset object
a = Asset(description,'stock',share_price*num_shares);

% Use the class function to define the stock object
s = class(s,'Stock',a);

Write the same Stock class constructor as shown here. Define the inheritance
on the classdef line and define the constructor within a methods block.

Constructor Function for Version 7.6

classdef Stock < Asset
...
methods

function s = Stock(description,num_shares,share_price)
% Call superclass constructor to pass arguments

3-47

3 Class Definition—Syntax Reference

s = s@Asset(description,'stock',share_price*num_shares);
s.NumShares = num_shares;
s.SharePrice = share_price;

end % End of function

end % End of methods block
end % End of classdef block

New Features Introduced with Version 7.6

• Properties: “How to Use Properties” on page 6-2

• Handle classes: “Comparing Handle and Value Classes” on page 5-2

• Events and listeners: “Events and Listeners — Concepts” on page 9-11

• Class member attributes: Attribute Tables

• Abstract classes: “Defining Abstract Classes” on page 10-77

• Dynamic properties: “Dynamic Properties — Adding Properties to an
Instance” on page 6-26

• Ability to subclass MATLAB built-in classes: “Creating Subclasses —
Syntax and Techniques” on page 10-7

• Packages for scoping functions and classes: “Packages Create Namespaces”
on page 4-20. MATLAB does not support packages for classes created
before MATLAB Version 7.6 (that is, classes that do not use classdef).

• The JIT/Accelerator supports objects defined only by classes using
classdef.

Examples of Old and New
The MATLAB Version 7.6 implementation of classes uses different syntax
from previous releases. However, classes written in previous versions
continue to work. Most of the code you use to implement the methods is likely
to remain the same, except where you take advantage of new features.

The following sections reimplement examples using the latest syntax. The
original MATLAB Classes and Objects documentation implemented these
same examples and provide a comparison of old and new syntax.

3-48

Compatibility with Previous Versions

“A Polynomial Class” on page 16-2

“A Simple Class Hierarchy” on page 17-2

“Containing Assets in a Portfolio” on page 17-19

Obsolete Documentation
Documentation for MATLAB Classes and Objects before Version 7.6 is
available here.

3-49

http://www.mathworks.com/help/pdf_doc/matlab/pre-version_7.6_oop.pdf

3 Class Definition—Syntax Reference

Comparing MATLAB with Other OO Languages

In this section...

“Some Differences from C++ and Sun Java Code” on page 3-50

“Modifying Objects” on page 3-51

“Common Object-Oriented Techniques” on page 3-56

Some Differences from C++ and Sun Java Code
The MATLAB programming language differs from other object-oriented
languages, such as C++ or Sun™ Java in some important ways.

Public Properties
Unlike fields in C++ or the Java language, you can use MATLAB properties to
define a public interface separate from the implementation of data storage.
You can provide public access to properties because you can define set and
get access methods that execute automatically when assigning or querying
property values. For example, the following statement:

myobj.Material = 'plastic';

assigns the string plastic to the Material property of myobj. Before making
the actual assignment, myobj executes a method called set.Material
(assuming the class of myobj defines this method), which can perform any
necessary operations. See “Property Access Methods” on page 6-14 for more
information on property access methods.

You can also control access to properties by setting attributes, which enable
public, protected , or private access. See “Property Attributes” on page 6-8
for a full list of property attributes.

No Implicit Parameters
In some languages, one object parameter to a method is always implicit. In
MATLAB, objects are explicit parameters to the methods that act on them.

3-50

Comparing MATLAB® with Other OO Languages

Dispatching
In MATLAB classes, method dispatching is not based on method signature,
as it is in C++ and Java code. When the argument list contains objects of
equal precedence, MATLAB software uses the left-most object to select the
method to call. However, if the class of that argument is superior to the
other arguments, MATLAB can dispatch to a method of an argument in any
position within an argument list.

See “Class Precedence” on page 4-18 for more information.

Calling Superclass Method

• In C++, you call a superclass method using the scoping operator:
superclass::method

• In Java code, you use: superclass.method

The equivalent MATLAB operation is method@superclass.

Other Differences
In MATLAB classes, there is no equivalent to C++ templates or Java generics.
However, MATLAB is weakly typed and it is possible to write functions and
classes that work with different types of data.

MATLAB classes do not support overloading functions using different
signatures for the same function name.

Modifying Objects
MATLAB classes can define public properties, which you can modify by
explicitly assigning values to those properties on a given instance of the
class. However, only classes derived from the handle class exhibit reference
behavior. Modifying a property value on an instance of a value classes (classes
not derived from handle), changes the value only within the context in which
the modification is made.

The sections that follow describe this behavior in more detail.

3-51

3 Class Definition—Syntax Reference

Passing Objects to Functions
MATLAB passes all variables by value. When you pass an object to a function,
MATLAB copies the value from the caller into the parameter variable in the
called function.

However, MATLAB supports two kinds of classes that behave differently
when copied:

• Handle classes — a handle class instance variable refers to an object.
A copy of a handle class instance variable refers to the same object as
the original variable. If a function modifies a handle object passed as an
input argument, the modification affects the object referenced by both the
original and copied handles.

• Value classes — the property data in an instance of a value class are
independent of the property data in copies of that instance (although, a
value class property could contain a handle). A function can modify a value
object that is passed as an input argument, but this modification does not
affect the original object.

See “Comparing Handle and Value Classes” on page 5-2 for more information
on the behavior and use of both kinds of classes.

Passing Value Objects. When you pass a value object to a function, the
function creates a local copy of the argument variable. The function can
modify only the copy. If you want to modify the original object, return the
modified object and assign it to the original variable name. For example,
consider the value class, SimpleClass :

classdef SimpleClass
properties

Color
end
methods

function obj = SimpleClass(c)
if nargin > 0

obj.Color = c;
end

end
end

3-52

Comparing MATLAB® with Other OO Languages

end

Create an instance of SimpleClass, assigning a value of red to its Color
property:

obj = SimpleClass('red');

Pass the object to the function g, which assigns blue to the Color property:

function y = g(x)
x.Color = 'blue';
y = x;

end

y = g(obj);

The function g modifies its copy of the input object and returns that copy, but
does not change the original object.

y.Color

ans =

blue
obj.Color

ans =

red

If the function g did not return a value, the modification of the object Color
property would have occurred only on the copy of obj within the function
workspace. This copy would have gone out of scope when the function
execution ended.

Overwriting the original variable actually replaces it with a new object:

obj = g(obj);

3-53

3 Class Definition—Syntax Reference

Passing Handle Objects. When you pass a handle to a function, the
function makes a copy of the handle variable, just like when passing a value
object. However, because a copy of a handle object refers to the same object
as the original handle, the function can modify the object without having to
return the modified object.

For example, suppose you modify the SimpleClass class definition to make a
class derived from the handle class:

classdef SimpleHandleClass < handle
properties

Color
end
methods

function obj = SimpleHandleClass(c)
if nargin > 0

obj.Color = c;
end

end
end

end

Create an instance of SimpleHandleClass, assigning a value of red to its
Color property:

obj = SimpleHandleClass('red');

Pass the object to the function g, which assigns blue to the Color property:

y = g(obj);

The function g sets the Color property of the object referred to by both the
returned handle and the original handle:

y.Color

ans =

blue
obj.Color

3-54

Comparing MATLAB® with Other OO Languages

ans =

blue

The variables y and obj refer to the same object:

y.Color = 'yellow';
obj.Color

ans =

yellow

The function g modified the object referred to by the input argument (obj)
and returned a handle to that object in y.

MATLAB Passes Handles by Value. A handle variable is a reference to an
object. MATLAB passes this reference by value.

Handles do not behave like references in C++. If you pass an object handle to
a function and that function assigns a different object to that handle variable,
the variable in the caller is not affected. For example, suppose you define a
function g2:

function y = g2(x)
x = SimpleHandleClass('green');
y = x;

end

Pass a handle object to g2:

obj = SimpleHandleClass('red');
y = g2(obj);
y.Color

ans =

green
obj.Color

ans =

3-55

3 Class Definition—Syntax Reference

red

The function overwrites the handle passed in as an argument, but does not
overwrite the object referred to by the handle. The original handle obj still
references the original object.

Common Object-Oriented Techniques
This table provides links to sections that discuss object-oriented techniques
commonly used by other object-oriented languages.

Technique How to Use in MATLAB

Operator
overloading

“Implementing Operators for Your Class” on page
15-35

Multiple inheritance “Subclassing Multiple Classes” on page 10-18

Subclassing “Creating Subclasses — Syntax and Techniques” on
page 10-7

Destructor “Handle Class Destructor” on page 5-16

Data member
scoping

“Property Attributes” on page 6-8

Packages (scoping
classes)

“Packages Create Namespaces” on page 4-20

Named constants See “Properties with Constant Values” on page 13-2
and “Defining Named Values” on page 12-2

Enumerations “Working with Enumerations” on page 12-4

Static methods “Static Methods” on page 7-25

Static properties Not supported. See persistent variables. For the
equivalent of Java static final or C++ static
const properties, use Constant properties. See
“Properties with Constant Values” on page 13-2

Constructor “Class Constructor Methods” on page 7-16

Copy constructor No direct equivalent

3-56

Comparing MATLAB® with Other OO Languages

Technique How to Use in MATLAB

Reference/reference
classes

“Comparing Handle and Value Classes” on page 5-2

Abstract
class/Interface

“Defining Abstract Classes” on page 10-77

Garbage collection “Object Lifecycle” on page 5-18

Instance properties “Dynamic Properties — Adding Properties to an
Instance” on page 6-26

Importing classes “Importing Classes” on page 4-25

Events and
Listeners

“Events and Listeners — Concepts” on page 9-11

3-57

3 Class Definition—Syntax Reference

3-58

4

Defining and Organizing
Classes

• “User-Defined Classes” on page 4-2

• “Class Definition” on page 4-4

• “Class Attributes” on page 4-6

• “Expressions in Class Definitions” on page 4-9

• “Organizing Classes in Folders” on page 4-15

• “Class Precedence” on page 4-18

• “Packages Create Namespaces” on page 4-20

• “Importing Classes” on page 4-25

4 Defining and Organizing Classes

User-Defined Classes

In this section...

“What is a Class Definition” on page 4-2

“Attributes for Class Members” on page 4-2

“Kinds of Classes” on page 4-3

“Constructing Objects” on page 4-3

“Class Hierarchies” on page 4-3

What is a Class Definition
A MATLAB class definition is a template whose purpose is to provide a
description of all the elements that are common to all instances of the class.
Class members are the properties, methods, and events that define the class.

MATLAB classes are defined in code blocks, with sub-blocks delineating the
definitions of various class members. See “classdef Syntax” on page 4-4 for
details on the classdef block.

Attributes for Class Members
Attributes modify the behavior of classes and the members defined in the
class-definition block. For example, you can specify that methods are static
or that properties are abstract, and so on. The following sections describe
these attributes:

• “Class Attributes” on page 4-6

• “Method Attributes” on page 7-5

• “Property Attributes” on page 6-8

• “Event Attributes” on page 9-16

Class definitions can provide information, such as inheritance relationships
or the names of class members without actually constructing the class. See
“Class Metadata” on page 14-2.

4-2

User-Defined Classes

See “Specifying Attributes” on page 4-7 for more on attribute syntax.

Kinds of Classes
There are two kinds of MATLAB classes—handle and value classes.

• Handle classes create objects that reference the data contained. Copies
refer to the same data.

• Value classes make copies of the data whenever the object is copied or
passed to a function. MATLAB numeric types are value classes.

See “Comparing Handle and Value Classes” on page 5-2 for a more complete
discussion.

Constructing Objects
For information on class constructors, see “Class Constructor Methods” on
page 7-16

For information on creating arrays of objects, see “Creating Object Arrays”
on page 8-2

Class Hierarchies
For more information on how to define class hierarchies, see “Class
Hierarchies”.

4-3

4 Defining and Organizing Classes

Class Definition

In this section...

“classdef Syntax” on page 4-4

“Examples of Class Definitions” on page 4-4

classdef Syntax
Class definitions are blocks of code that are delineated by the classdef
keyword at the beginning and the end keyword at the end. Files can contain
only one class definition.

The following diagram shows the syntax of a classdef block. Only comments
and blank lines can precede the classdef key word.

Class attribute

classdef block

classdef keyword begins definition block.

end keyword terminates definition block.

classdef (ConstructOnLoad = true) PositiveIntegers < Integers & Positives

...

end

Attribute value
(logical true)

Class name Super classes

Examples of Class Definitions
See the following links for examples of classes defined for different purposes:

• “Class to Represent Structured Data” on page 2-22

4-4

Class Definition

• “Class to Implement Linked Lists” on page 2-31

• “Developing Classes — Typical Workflow” on page 2-11

• “A Polynomial Class” on page 16-2

4-5

4 Defining and Organizing Classes

Class Attributes

In this section...

“Table of Class Attributes” on page 4-6

“Specifying Attributes” on page 4-7

Table of Class Attributes
All classes support the attributes listed in the following table. Attributes
enable you to modify the behavior of class. Attribute values apply to the class
defined within the classdef block.

Attribute Name Class Description

Abstract logical

(default =
false)

If specified as true, this class is an abstract class (cannot
be instantiated).

See “Defining Abstract Classes” on page 10-77 for more
information.

AllowedSubclasses meta.class
object or
cell array of
meta.class
objects

List classes that can subclass this class. Specify subclasses
as meta.class objects in the form:

• A single meta.class object

• A cell array of meta.class objects. An empty cell array,
{}, is the same as a Sealed class (no subclasses).

Specify meta.class objects using the ?ClassName syntax
only.

See “Controlling Allowed Subclasses” on page 10-20 for
more information.

ConstructOnLoad logical

(default =
false)

If true, MATLAB calls the class constructor when loading
an object from a MAT-file. Therefore, you must implement
the constructor so it can be called with no arguments
without producing an error.

See “Calling Constructor When Loading” on page 11-25

4-6

Class Attributes

(Continued)

Attribute Name Class Description

HandleCompatible logical

(default =
false)for
value
classes

If specified as true, this class can be used as a superclass for
handle classes. All handle classes are HandleCompatible
by definition. See “Supporting Both Handle and Value
Subclasses” on page 10-34 for more information.

Hidden logical

(default =
false)

If true, this class does not appear in the output of the
superclasses or help functions.

InferiorClasses cell

(default =
{})

Use this attribute to establish a precedence relationship
among classes. Specify a cell array of meta.class objects
using the ? operator.

The built-in classes double, single, char, logical, int64,
uint64, int32, uint32, int16, uint16, int8, uint8, cell,
struct, and function_handle are always inferior to
user-defined classes and do not show up in this list.

See “Class Precedence” on page 4-18

Sealed logical

(default =
false)

If true, this class can not be subclassed.

Specifying Attributes
Attributes are specified for class members in the classdef, properties,
methods, and events definition blocks. The particular attribute setting
applies to all members defined within that particular block. This means that,
for example, you might use multiple properties definition blocks so you can
apply different attribute setting to different properties.

Superclass Attributes Are Not Inherited
Class attributes are not inherited, so superclass attributes do not affect
subclasses.

4-7

4 Defining and Organizing Classes

Attribute Syntax
Specify class attribute values in parentheses, separating each attribute
name/attribute value pair with a comma. The attribute list always follows the
classdef or class member key word, as shown below:

classdef (attribute-name = expression, ...) ClassName

properties (attribute-name = expression, ...)

...

end

methods (attribute-name = expression, ...)

...

end

events (attribute-name = expression, ...)

...

end

end

See“Expressions in Attribute Specifications” on page 4-10 for more
information.

4-8

Expressions in Class Definitions

Expressions in Class Definitions

In this section...

“Basic Knowledge” on page 4-9

“Where to Use Expressions in Class Definitions” on page 4-9

“How MATLAB Evaluates Expressions” on page 4-11

Basic Knowledge
The material presented in this section builds on an understanding of the
following information:

• “Operators and Elementary Operations”

• “Properties” on page 3-10

• “Specifying Attributes” on page 3-23

Where to Use Expressions in Class Definitions
An expression used in a class definition can be any valid MATLAB statement
that evaluates to a single array. Use expressions to define property default
values and in attribute specifications. Here are some examples used in a
class definition:

classdef MyClass (Sealed = true)

% Logical value sets attribute

properties (Constant = true)

CnstProp = 2^.5;

end

properties

Prop1 = MyClass.setupAccount; % Static method of this class

Prop2 = MyConstants.Minimum; % Constant property from another class

Prop3 = MyConstants.Rate*MyClass.CnstProp % Constant property from this class

Prop4 = AccountManager; % A class constructor

end

end

4-9

4 Defining and Organizing Classes

MATLAB does not call property set methods when assigning the result of
default value expressions to properties. (See “Property Access Methods” on
page 6-14 for information about these special methods.)

Expressions in Attribute Specifications
Class definitions specify attribute values using an expression that assigns the
desired value to the named attribute. For example, this assignment makes
MyClass sealed (cannot be subclassed).

classdef MyClass (Sealed = true)

It is possible to use a MATLAB expression on the right side of the equals sign
(=) as long as it evaluates to logical true or false. However, this expression
cannot use any definitions in its own file, including any constant properties,
static methods, and local functions.

While it is possible to use conditional expressions to specify attribute values,
doing so can cause the class definition to change based on external conditions.

See “Specifying Attributes” on page 3-23 for more information on attribute
syntax.

Expressions in Default Property Specifications
Property definitions allow you to specify default values for properties using
any expression that has no reference to variables. For example, Myclass
defines a constant property (Deg2Rad) and uses it in an expression that defines
the default value of another property (PropA). The default value expression
also uses a static method (getAngle) defined by the class:

classdef MyClass
properties (Constant = true)

Deg2Rad = pi/180;
end
properties

PropA = sin(Deg2Rad*MyClass.getAngle[1 0],[0 1]);
end
...
methods (Static = true)

r = getAngle(vx,vy)

4-10

Expressions in Class Definitions

...
end

end
end

Expressions in Class Methods
Expression in class methods execute like expressions in any function —
MATLAB evaluates an expression within the function’s workspace only when
the method executes. Therefore, expressions used in class methods are not
considered part of the class definition and are not discussed in this section.

How MATLAB Evaluates Expressions
MATLAB evaluates the expressions used in the class definition without any
workspace. Therefore, these expressions cannot reference variables of any
kind.

MATLAB evaluates expressions in the context of the class file, so these
expressions can access any functions, static methods, and constant properties
of other classes that are on your path at the time MATLAB initializes the
class. Expressions defining property default values can access constant
properties defined in their own class.

When Does MATLAB Evaluate These Expressions
MATLAB evaluates the expressions in class definitions only when the class
is initialized, which occurs before the class is first used. After initialization,
the values returned by these expressions are considered part of the class
definition and are constant for all instances of the class. Each instance of
the class uses the results of the initial evaluation of the expressions without
reevaluation. If you clear a class (see “Modifying and Reloading Classes”
on page 3-43), then MATLAB reinitializes the class by reevaluating the
expressions that are part of the class definition.

The following example shows how value and handle object behave when
assigned to properties as default values. Suppose you have the following
classes. ContClass defines the object that is created as a default property
value, and ClassExp has a property that contains a ContClass object:

classdef ContClass

4-11

4 Defining and Organizing Classes

properties

TimeProp = datestr(now); % Assign current date and time

end

end

classdef ClassExp

properties

ObjProp = ContClass;

end

end

MATLAB creates an instance of the ContClass class when the ClassExp class
is first used. MATLAB initializes both classes at this time. All instances of
ClassExp include a copy of this same instance of ContClass.

a = ClassExp;
a.ObjProp.TimeProp

ans =

08-Oct-2003 17:16:08

The TimeProp property of the ContClass object contains the date and time
when MATLAB initialized the class. Creating additional instances of the
ClassExp class shows that the date string has not changed:

b = ClassExp;
b.ObjProp.TimeProp

ans =

08-Oct-2003 17:16:08

Because this example uses a value class for the contained object, each
instance of the ClassExp has its own copy of the object. For example, suppose
you change the value of the TimeProp property on the object contained by
ClassExp objectb:

b.ObjProp.TimeProp = datestr(now)

ans =

4-12

Expressions in Class Definitions

08-Oct-2003 17:22:49

The copy of the object contained by object a is unchanged:

a.ObjProp.TimeProp

ans =

08-Oct-2003 17:16:08

Now consider the difference in behavior if the contained object is a handle
object:

classdef ContClass < handle
properties

TimeProp = datestr(now);
end

end

Creating two instances of the ClassExp class shows that MATLAB created
an object when it initialized the ContClass and used a copy of the object
handle for each instance of the ClassExp class. This means there is one
ContClass object and the ObjProp property of each ClassExp object contains
a copy of its handle.

Create an instance of the ClassExp class and note the time of creation:

a = ClassExp;
a.ObjProp.TimeProp

ans =

08-Oct-2003 17:46:01

Create a second instance of the ClassExp class. The ObjProp contains the
handle of the same object:

b = ClassExp;
b.ObjProp.TimeProp

4-13

4 Defining and Organizing Classes

ans =

08-Oct-2003 17:46:01

Reassign the value of the contained object’s TimeProp property:

b.ObjProp.TimeProp = datestr(now);
b.ObjProp.TimeProp

ans =

08-Oct-2003 17:47:34

Because the ObjProp property of object b contains a handle to the same object
as the ObjProp property of object a, the value of the TimeProp property has
changed on this object as well:

a.ObjProp.TimeProp

ans =

08-Oct-2003 17:47:34

See “Comparing Handle and Value Classes” on page 5-2 for more information
on handle and value classes.

4-14

Organizing Classes in Folders

Organizing Classes in Folders

In this section...

“Options for Class Folders” on page 4-15

“@-Folders” on page 4-15

“Path Folders” on page 4-16

“Access to Functions Defined in Private Folders” on page 4-16

“Class Precedence and MATLAB Path” on page 4-16

Options for Class Folders
There are two types of folders that can contain class definitions. Each behave
differently in a number of respects.

• @-folders — Folder name begins with “@” and is not on the MATLAB path,
but its parent folder is on the path. Use this type of folder when you want
to use multiple files for one class definition.

• path folders — Folder name does not use an @ character and is itself on
the MATLAB path. Use this type of folder when you want multiple classes
in one folder.

@-Folders
An @-folder must be contained by a path folder, but is not itself on the
MATLAB path. Place the class definition file inside the @-folder, which
can also contain separate method files. The class definition file must have
the same name as the @-folder (without the @-sign) and the class definition
(beginning with the classdef key word) must appear in the file before any
other code (white space and comments do not constitute code).

Define only one class per folder. All files must have a .m extension (for
example, @MyClass/MyClass.m, @MyClass/myMethod.m, and so on).

You must use an @-folder if you want to use more than one file for your class
definition. Methods defined in separate files match the file name to the
function name and must be declared in the classdef file. See “Methods In
Separate Files” on page 3-16 for more information.

4-15

4 Defining and Organizing Classes

Path Folders
You can locate class definition files in folders that are on the MATLAB
path. These classes are visible on the path like any ordinary function. Class
definitions placed in path folders behave like any ordinary function with
respect to precedence—the first occurrence of a name on the MATLAB path
takes precedence over all subsequent occurrences.

The name of the file must match the name of the class, as specified with
the classdef key word. Using a path folder eliminates the need to create
a separate @-folder for each class. However, the entire class definition,
including all methods, must be contained within a single file (for example,
MyClass1.m, MyClass2.m, and so on).

See the path function for information about the MATLAB path.

Access to Functions Defined in Private Folders
Private folders contain functions that are accessible only from functions
defined in folders immediately above the private folder (See “Private
Functions” for more information). If a class folder contains a private folder,
only the class (or classes) defined in that folder can access functions defined
in the private folder. Subclasses do not have access to superclass private
functions.

If you want a subclass to have access to the private functions of the superclass,
define the private functions as protected methods of the superclass (that is, in
a methods block with the Access attribute defined a protected).

No Class Definitions in Private Folders
You cannot put class definitions in private folders because doing so would not
meet the requirements for @ or path folders.

Class Precedence and MATLAB Path
When multiple class definition files with the same name exist, the precedence
of a given file is determined by its location on the MATLAB path. All class
definition files before it on the path (whether in an @-folder or not) take
precedence and it takes precedence over all class definition files occurring
later on the path.

4-16

Organizing Classes in Folders

For example, consider a path with the following folders, containing the files
indicated:

fldr1/foo.m % defines class foo
fldr2/foo.m % defines function foo
fldr3/@foo/foo.m % defines class foo
fldr4/@foo/bar.m % defines method bar
fldr5/foo.m % defines class foo

The MATLAB language applies the logic in the following list to determine
which version of foo to call:

• Class fldr1/foo.m takes precedence over the class fldr3/@foo because it
is before fldr3/@foo on the path.

• Class fldr3/@foo takes precedence over function fldr2/foo.m because it
is a class in an @-folder and fldr2/foo.m is not a class (@-folder classes
take precedence over functions).

• Function fldr2/foo.m takes precedence over class fldr5/foo.m because it
comes before class fldr5/foo.m on the path and because class fldr5/foo.m
is not in an @-folder. Classes not defined in @-folder abide by path order
with respect to functions.

• Class fldr3/@foo takes precedence over class fldr4/@foo; therefore, the
method bar is not recognized as part of the foo class (which is defined
only by fldr3/@foo).

• If fldr3/@foo/foo.m does not contain a classdef keyword (i.e., it is a
MATLAB class prior to Version 7.6), then fldr4/@foo/bar.m becomes a
method of the foo class defined in fldr3/@foo.

Previous Behavior of Classes Defined in @-Folders
In MATLAB Versions 5 through 7, @-folders do not shadow other @-folders
having the same name, but residing in later path folders. Instead, the class
is defined by the combination of methods from all @-folders having the same
name. This is no longer true.

Note that for backward compatibility, classes defined in @-folders always take
precedence over functions and scripts having the same name, even those
that come before them on the path.

4-17

4 Defining and Organizing Classes

Class Precedence

InferiorClasses Attribute
You can specify the relative precedence of user-defined classes using the class
InferiorClasses attribute. Assign a cell array of class names (represented
as meta.class objects) to this attribute to specify classes that are inferior to
the class you are defining. For example, the following classdef declares that
myClass is dominant over class1 and class2.

classdef (InferiorClasses = {?class1,?class2}) myClass
...

end

The ? operator combined with a class name creates a meta.class object. This
syntax enables you to create a meta.class object without requiring you to
construct an actual instance of the class.

MATLAB built-in classes are always inferior to user-defined classes and
should not be used in this list.

The built-in classes include: double, single, char, logical, int64,
uint64, int32, uint32, int16, uint16, int8, uint8, cell, struct, and
function_handle.

Dominant Class
MATLAB uses class dominance when evaluating expressions involving objects
of more than one class. The dominant class determines:

• The methods of which class MATLAB calls when more than one class
defines methods with the same names.

• The class of arrays that are formed by combining objects of different classes,
assuming MATLAB can convert the inferior objects to the dominant class.

See “Concatenating Objects of Different Classes” on page 8-13 for more
information on creating object arrays.

4-18

Class Precedence

More Information
See “Determining Which Method Is Invoked” on page 7-9 for more on how the
MATLAB classes dispatch when evaluating expressions containing objects.

See “Class Precedence and MATLAB Path” on page 4-16 for information on
how the location of a class definition on the MATLAB path determines its
precedence.

See “Class Metadata” on page 14-2 for information on meta-class objects.

No Attribute Inheritance
Subclasses do not inherit a superclass InferiorClasses attribute. Only
instances of the classes specified in the subclass InferiorClasses attribute
are inferior to subclass objects.

4-19

4 Defining and Organizing Classes

Packages Create Namespaces

In this section...

“Internal Packages” on page 4-20

“Package Folders” on page 4-20

“Referencing Package Members Within Packages” on page 4-21

“Referencing Package Members from Outside the Package” on page 4-22

“Packages and the MATLAB Path” on page 4-23

Internal Packages
MathWorks® reserves the use of packages named internal for utility
functions used by internal MATLAB code. Functions that belong to an
internal package are intended for MathWorks use only. Using functions or
classes that belong to an internal package is strongly discouraged. These
functions and classes are not guaranteed to work in a consistent manner from
one release to the next. Any of these functions and classes might be removed
from the MATLAB software in any subsequent release without notice and
without documentation in the product release notes.

Package Folders
Packages are special folders that can contain class folders, function and
class definition files, and other packages. Packages define the scope of the
contents of the package folder (that is, a namespace within which names must
be unique). This means function and class names need to be unique only
within the package. Using a package provides a means to organize classes
and functions and to select names for these components that other packages
can reuse.

Note Packages are not supported for classes created prior to MATLAB
Version 7.6 (i.e., classes that do not use classdef).

Package folders always begin with the + character. For example,

4-20

Packages Create Namespaces

+mypack
+mypack/pkfcn.m % a package function
+mypack/@myClass % class folder in a package

The top-level package folder’s parent folder must be on the MATLAB path.

Listing the Contents of a Package
List the contents of a package using the help command:

help event
Contents of event:

EventData - event.EVENTDATA Base class for event da
PropertyEvent - event.PROPERTYEVENT Event data for obje
listener - event.LISTENER Listener object
proplistener - event.PROPLISTENER Listener object for

You can also use the what command:

what event

Classes in directory Y:xxx\matlab\toolbox\matlab\lang\+event

EventData PropertyEvent listener proplistener

Referencing Package Members Within Packages
All references to packages, functions, and classes in the package must use
the package name prefix, unless you import the package. (See “Importing
Classes” on page 4-25.) For example, call a package function with this syntax:

z = mypack.pkfcn(x,y);

Note that definitions do not use the package prefix. For example, the function
definition line of the pkfcn.m function would include only the function name:

function z = pkfcn(x,y)

Similarly, a package class would be defined with only the class name:

classdef myClass

4-21

4 Defining and Organizing Classes

but would be called with the package prefix:

obj = mypack.myClass(arg1,arg2,...);

Calling class methods does not require the package name because you have
an instance of the class:

obj.myMethod(arg) or
myMethod(obj,arg)

A static method requires the full class name:

mypack.myClass.stMethod(arg)

Referencing Package Members from Outside the
Package
Because functions, classes, and other packages contained in a package are
scoped to that package, to reference any of the package members, you must
prefix the package name to the member name, separated by a dot. For
example, the following statement creates an instance of myClass, which is
contained in mypack package.

obj = mypack.myClass;

Accessing Class Members — Various Scenarios
This section shows you how to access various package members from outside
a package. Suppose you have a package mypack with the following contents:

+mypack
+mypack/myfcn.m
+mypack/@myfirstclass
+mypack/@myfirstclass/myfcn.m
+mypack/@myfirstclass/otherfcn.m
+mypack/@myfirstclass/myfirstclass.m
+mypack/@mysecondclass
+mypack/@mysecondclass/mysecondclass.m
+mypack/+mysubpack
+mypack/+mysubpack/myfcn.m

Invoke the myfcn function in mypack:

4-22

Packages Create Namespaces

mypack.myfcn(arg)

Create an instance of each class in mypack:

obj1 = mypack.myfirstclass;
obj2 = mypack.mysecondclass(arg);

Invoke the myfcn function in mysubpack:

mypack.mysubpack.myfcn(arg1,arg2);

If mypack.myfirstclass has a method called myfcn, it is called as any
method call on an object:

obj = mypack.myfirstclass;
myfcn(obj,arg);

If mypack.myfirstclass has a property called MyProp, it can be assigned
using dot notation and the object:

obj = mypack.myfirstclass;
obj.MyProp = some_value;

Packages and the MATLAB Path
You cannot add package folders to the MATLAB path, but you must add the
package’s parent folder to the path. Even if a package folder is the current
folder, its parent folder must still be on the MATLAB path or the package
members are not accessible.

Package members remain scoped to the package even if the package folder is
the current folder. You must, therefore, always refer to the package members
using the package name.

Package folders do not shadow other package folders that are positioned later
on the path, unlike classes, which do shadow other classes.

Resolving Redundant Names
Suppose a package and a class have the same name. For example:

fldr1/+foo

4-23

4 Defining and Organizing Classes

fldr2/@foo/foo.m

A call to which foo returns the path to the executable class constructor:

>> which foo
fldr2/@foo/foo.m

A function and a package can have the same name. However, a package name
by itself is not an identifier so if a redundant name occurs alone, it identifies
the function. Executing a package name alone returns an error.

Package Functions vs. Static Methods
In cases where a package and a class have the same name, a static method
takes precedence over a package function. For example:

fldr1/+foo/bar.m % bar is a function in package foo

fldr2/@foo/bar.m % bar is a static method of class foo

A call to which foo.bar returns the path to the static method:

>> which foo.bar
fldr2/@foo/bar.m

In cases where a path folder contains both package and class folders with
the same name, the class static method takes precedence over the package
method:

fldr1/@foo/bar.m % bar is a static method of class foo

fldr1/+foo/bar.m % bar is a function in package foo

A call to which foo.bar returns the path to the static method:

>> which foo.bar
fldr1/@foo/bar.m

4-24

Importing Classes

Importing Classes

In this section...

“Related Information” on page 4-25

“Syntax for Importing Classes” on page 4-25

Related Information
See “Packages Create Namespaces” on page 4-20 for information about
packages.

Syntax for Importing Classes
You can import classes into a function to simplify access to class members. For
example, suppose there is a package that contains a number of classes, but
you need to use only one of these classes in your function, or perhaps even just
a static method from that class. You can use the import command as follows:

function myFunc
import pkg.cls1
obj = cls1(arg,...); % call cls1 constructor
obj.Prop = cls1.StaticMethod(arg,...); % call cls1 static method

end

Note that you do not need to reference the package name (pkg) once you have
imported the class (cls1). You can also import all classes in a package using
the syntax pkg.*, where * indicates all classes in the package. For example,

function myFunc
import pkg.*
obj1 = cls1(arg,...); % call pkg.cls1 constructor
obj2 = cls2(arg,...); % call pkg.cls2 constructor
a = pkgFunction(); % call package function named pkgFunction

end

Importing Package Functions
You can use import with package functions:

4-25

4 Defining and Organizing Classes

function myFunc
import pkg.pkfcn
pkfcn(arg,...); % call imported package function

end

Package Function and Class Method Name Conflict
Suppose you have the following folder organization:

+pkg/timedata.m % package function
+pkg/@myclass/myclass.m % class definition file
+pkg/@myclass/timedata.m % class method

Now import the package and call timedata on an instance of myclass:

import pkg.*
myobj = pkg.myclass;
timedata(myobj)

A call to timedata finds the package function, not the class method because
MATLAB applies the import and finds pkg.timedata first. Do not use a
package in cases where you have name conflicts and plan to import the
package.

Clearing Import List
You can not clear the import list from a function workspace. To clear the base
workspace only, use:

clear import

4-26

5

Value or Handle Class —
Which to Use

• “Comparing Handle and Value Classes” on page 5-2

• “Which Kind of Class to Use” on page 5-9

• “The Handle Superclass” on page 5-11

• “Handle Class Destructor” on page 5-16

• “Finding Handle Objects and Properties” on page 5-22

• “Implementing a Set/Get Interface for Properties” on page 5-23

• “Controlling the Number of Instances” on page 5-31

5 Value or Handle Class — Which to Use

Comparing Handle and Value Classes

In this section...

“Basic Difference” on page 5-2

“Why Select Handle or Value” on page 5-2

“Behavior of MATLAB Built-In Classes” on page 5-3

“Behavior of User-Defined Classes” on page 5-4

Basic Difference
A value class constructor returns an instance that is associated with the
variable to which it is assigned. If you reassign this variable, MATLAB
creates a copy of the original object. If you pass this variable to a function, the
function must return the modified object.

A handle class constructor returns a handle object that is a reference to the
object created. You can assign the handle object to multiple variables or pass
it to functions without causing MATLAB to make a copy of the original object.
A function that modifies a handle object passed as an input argument does
not need to return the object.

Note All handle classes must subclass the abstract handle class.

“Modifying Objects” on page 3-51 compares handle and value object behavior
when used as arguments to functions.

Why Select Handle or Value
MATLAB support two kinds of classes — handle classes and value classes.
The kind of class you use depends on the desired behavior of the class
instances and what features you want to use.

Use a handle class when you want to create a reference to the data contained
in an object of the class, and do not want copies of the object to make copies of
the object data. For example, use a handle class to implement an object that

5-2

Comparing Handle and Value Classes

contains information for a phone book entry. Multiple application programs
can access a particular phone book entry, but there can be only one set of
underlying data.

The reference behavior of handles enables these classes to support features
like events, listeners, and dynamic properties.

Use value classes to represent entities that do not need to be unique, like
numeric values. For example, use a value class to implement a polynomial
data type. You can copy a polynomial object and then modify its coefficients to
make a different polynomial without affecting the original polynomial.

“Which Kind of Class to Use” on page 5-9 describes how to select the kind
of class to use for your application.

Behavior of MATLAB Built-In Classes
If you create an object of the class int32 and make a copy of this object, the
result is two independent objects having no data shared between them. The
following code example creates an object of class int32 and assigns it to
variable a, and then copies it to b. When you raise a to the fourth power
and assign the value again to the variable a, MATLAB creates an object
with the new data and assigns it to the variable a, overwriting the previous
assignment. The value of b does not change.

a = int32(7);
b = a;
a = a^4;
b

7

MATLAB copies the value of a to b, which results in two independent versions
of the original object. This behavior is typical of MATLAB numeric classes.

Handle Graphics classes return a handle to the object created. A handle is a
variable that references an instance of a class. If you copy the handle, you
have another variable that refers to the same object. There is still only one
version of the object data. For example, if you create a Handle Graphics line
object and copy its handle to another variable, you can set the properties of
the same line using either copy of the handle.

5-3

5 Value or Handle Class — Which to Use

x = 1:10; y = sin(x);

h1 = line(x,y);

h2 = h1;

set(h2,'Color','red') % line is red

set(h1,'Color','green') % line is green

delete(h2)

set(h1,'Color','blue')

MATLAB returns an

Invalid or deleted object.

error in this case.

If you delete one handle, all copies are now invalid because you have deleted
the single object to which all copies point.

Behavior of User-Defined Classes
Value class instances behave like built-in numeric classes and handle class
instances behave like Handle Graphics objects, as illustrated in “Behavior of
MATLAB Built-In Classes” on page 5-3.

Value Classes
MATLAB associates objects of value classes with the variables to which
you assign them. When you copy a value object, MATLAB also copies the
data contained by the object. The new object is independent of changes to
the original object. Instances behave like standard MATLAB numeric and
struct classes. Each property behaves essentially like a MATLAB array See
“Memory Allocation for Arrays” for more information.

Value Class Behavior
Use value classes when assigning an object to a variable and passing an object
to a function must make a copy of the function. Value objects are always
associated with one workspace or temporary variable and go out of scope
when that variable goes out of scope or is cleared. There are no references to
value objects, only copies which are themselves objects.

5-4

Comparing Handle and Value Classes

For example, suppose you define a polynomial class whose Coefficients
property stores the coefficients of the polynomial. Note how copies of these
value-class objects are independent of each other:

p = polynomial([1 0 -2 -5]);
p2 = p;
p.Coefficients = [2 3 -1 -2 -3];
p2.Coefficients
ans =

1 0 -2 -5

Creating a Value Class
All classes that are not subclasses of the handle class are value classes.
Therefore, the following classdef creates a value class named myValueClass:

classdef myValueClass
...

end

Handle Classes
Objects of handle classes use a handle to reference objects of the class. A
handle is a variable that identifies an instance of a class. When you copy a
handle object, MATLAB copies the handle, but not the data stored in the
object properties. The copy refers to the same data as the original handle. If
you change a property value on the original object, the copied object reflects
the same change.

All handle classes are subclasses of the abstract handle class. In addition to
providing handle copy semantics, deriving from the handle class enables
your class to:

• Inherit a number of useful methods (“Handle Class Methods” on page 5-12)

• Define events and listeners (“Events and Listeners — Syntax and
Techniques” on page 9-18)

• Define dynamic properties (“Dynamic Properties — Adding Properties to
an Instance” on page 6-26)

5-5

5 Value or Handle Class — Which to Use

• Implement Handle Graphics type set and get methods (“Implementing a
Set/Get Interface for Properties” on page 5-23)

Creating a Handle Class
Subclass the handle class explicitly to create a handle class:

classdef myClass < handle
...

end

See “The Handle Superclass” on page 5-11 for more information on the handle
class and its methods.

Subclasses of Handle Classes
If you subclass a class that is itself a subclass of the handle class, your
subclass is also a handle class. You do not need to specify the handle
superclass explicitly in your class definition. For example, the employee class
is a subclass of the handle class:

classdef employee < handle
...
end

Create a subclass of the employee class for engineer employees, which is
also a handle class. You do not need to specify handle as a superclass in
the classdef:

classdef engineer < employee
...
end

Handle Class Behavior
A handle is an object that references its data indirectly. When constructing
a handle, the MATLAB runtime creates an object with storage for property
values and the constructor function returns a handle to this object. When you
assign the handle to a variable or when you pass the handle to a function,
MATLAB copies the handle, but not the underlying data.

5-6

Comparing Handle and Value Classes

For example, suppose you have defined a handle class that stores data about
company employees, such as the department in which they work:

classdef employee < handle
properties

Name = ''
Department = '';

end
methods

function e = employee(name,dept)
e.Name = name;
e.Department = dept;

end % employee
function transfer(obj,newDepartment)

obj.Department = newDepartment;
end % transfer

end
end

The transfermethod in the previous code changes the employee’s department
(the Department property of an employee object). In the following statements,
e2 is a copy of the handle object e. Notice that when you change the
Department property of object e, the property value also changes in object e2.

e = employee('Fred Smith','QE');
e2 = e; % Copy handle object
transfer(e,'Engineering')
e2.Department
ans =
Engineering

The variable e2 is an alias for e and refers to the same property data storage
as e.

Initializing Properties to Handle Objects
See “Initializing Property Values” on page 3-10 for information on the
differences between initializing properties to default values in the properties
block and initializing properties from within the constructor. Also, see
“Initializing Arrays of Handle Objects” on page 8-7 for related information on
working with handle classes.

5-7

5 Value or Handle Class — Which to Use

employee as a Value Class
If the employee class was a value class, then the transfer method would
modify only its local copy of the employee object. In value classes, methods
like transfer that modify the object must return a modified object to copy
over the existing object variable:

function obj = transfer(obj,newDepartment)
obj.Department = newDepartment;

end

When you call transfer, assign the output argument to create the modified
object.

e = transfer(e,'Engineering');

In a value class, the transfer method does not affect the variable e2, which
is a different employee object. In this example, having two independent
copies of objects representing the same employee is not a good design. Hence,
implement the employee class as a handle class.

Deleting Handles
You can destroy handle objects before they become unreachable by explicitly
calling the delete function. Deleting the handle of a handle class object
makes all handles invalid. For example:

delete(e2)
e.Department
Invalid or deleted object.

Calling the delete function on a handle object invokes the destructor function
or functions for that object. See “Handle Class Destructor” on page 5-16 for
more information.

5-8

Which Kind of Class to Use

Which Kind of Class to Use

In this section...

“Examples of Value and Handle Classes” on page 5-9

“When to Use Handle Classes” on page 5-9

“When to Use Value Classes” on page 5-10

Examples of Value and Handle Classes
Handle and value classes are useful in different situations. For example,
value classes enable you to create new array classes that have the same
semantics as MATLAB numeric classes.

“A Polynomial Class” on page 16-2 and “Class to Represent Structured Data”
on page 2-22 provides examples of value classes.

Handle classes enable you to create objects that more than one function or
object can share. Handle objects allow more complex interactions among
objects because they allow objects to reference each other.

“Class to Implement Linked Lists” on page 2-31 and “Developing Classes —
Typical Workflow” on page 2-11 provides examples of a handle class.

When to Use Handle Classes
Use a handle class when:

• No two instances of a class can have the same state, making it impossible
to have exact copies. For example:

- A copy of a graphics object (such as a line) has a different position in
its parents list of children than the object from which it was copied.
Therefore, the two objects are not identical.

- Nodes in lists or trees having specific connectivity to other nodes—no
two nodes can have the same connectivity.

5-9

5 Value or Handle Class — Which to Use

• The class represents physical and unique objects like serial ports or
printers, in which the entity or state cannot exist in a MATLAB variable.
However, a handle to such entity can be a variable.

• The class defines events and notifies listeners when an event occurs
(notify is a handle class method).

• The class creates listeners by calling the handle class addlistenermethod.

• The class subclasses the dynamicprops class (a subclass of handle) so that
instances can define dynamic properties.

• The class subclasses the hgsetget class (a subclass of handle) so that it
can implement a Handle Graphics™ style set/get interface.

• You want to create a singleton class or a class in which you track the
number of instances from within the constructor. MATLAB software never
creates a unique handle without calling the class constructor. A copy of a
handle object is not unique because both original and copy reference the
same data.

When to Use Value Classes
Value class instances behave like normal MATLAB variables. A typical use of
value classes is to define data structures. For example, suppose you want to
define a class to represent polynomials. This class can define a property to
contain a list of coefficients for the polynomial. It can implement methods that
enable you to perform various common operations on the polynomial object.
For example, implement addition and multiplication without converting the
object to another class.

A value class is suitable because you can copy a polynomial object and have
two objects that are identical representations of the same polynomial. See
“Subclassing MATLAB Built-In Types” on page 10-43 for more information
on value classes.

5-10

The Handle Superclass

The Handle Superclass

In this section...

“Building on the Handle Class” on page 5-11

“Handle Class Methods” on page 5-12

“Relational Methods” on page 5-12

“Testing Handle Validity” on page 5-13

“When MATLAB Destroys Objects” on page 5-15

Building on the Handle Class
The handle class is an abstract class, which means you cannot create an
instance of this class directly. Instead, you use this class as a superclass
when you implement your own class. The handle class is the foundation of all
classes that are themselves handle classes. When you define a class that is
a subclass of handle, you have created a handle class. Therefore, all classes
that follow handle semantics are subclasses of the handle class.

Handle Subclasses
There are two subclasses of the handle class that provide additional features
when you derive your class from these subclasses:

• hgsetget— Provides set and get methods that enable you to implement a
Handle Graphics™ style interface. See “Implementing a Set/Get Interface
for Properties” on page 5-23 for information on subclassing hgsetget.

• dynamicprops — Provides the ability to define instance properties. See
“Dynamic Properties — Adding Properties to an Instance” on page 6-26 for
information on subclassing dynamicprops.

Deriving from subclasses of the handle class means that your class is a
handle class. It inherits all the handle class methods, plus the special
features provided by these subclasses.

5-11

5 Value or Handle Class — Which to Use

Handle Class Methods
While the handle class defines no properties, it does define the methods
discussed in this section. Whenever you create a handle class (that is,
subclass the handle class), your subclass inherits these methods.

You can list the methods of a class by passing the class name to the methods
function:

>> methods('handle')

Methods for class handle:

addlistener findobj gt lt

delete findprop isvalid ne

eq ge le notify

Static Methods:

empty

“Events and Listeners — Syntax and Techniques” on page 9-18 provides
information on how to use the notify and addlistener methods, which are
related to the use of events.

“Creating Subclasses — Syntax and Techniques” on page 10-7 provides
general information on defining subclasses.

Relational Methods

function TF = eq(H1,H2)
function TF = ne(H1,H2)
function TF = lt(H1,H2)
function TF = le(H1,H2)
function TF = gt(H1,H2)
function TF = ge(H1,H2)

The handle class overloads these functions with implementations that allow
for equality tests and sorting on handles. For each pair of input arrays,
these functions return a logical array of the same size. Each element is an

5-12

The Handle Superclass

element-wise equality or comparison test result. The input arrays must be
the same size or one (or both) can be scalar. The method performs scalar
expansion as required.

Testing Handle Validity
Use the isvalid handle class method to determine if you have a valid handle
object. For example, in this statement:

B = isvalid(H)

B is a logical array in which each element is true if, and only if, the
corresponding element of H is a valid handle. B is always the same size as H.

Handle Class or Graphics Object Handle
Use the isa function to determine if a handle is of class handle, or is a Sun
Java or Handle Graphics handle. For example, consider the button class,
which derives from the handle class:

classdef button < handle

properties

UiHandle

end

methods

function obj = button(pos)

if nargin > 0

if length(pos) == 4

obj.UiHandle = uicontrol('Position',pos,'Style','pushbutton');

else

error('Improper position')

end

end

end

end

end

Create a button object by passing a position vector to the button constructor:

h = button([50 20 50 20]);

5-13

5 Value or Handle Class — Which to Use

Determine the difference between the graphics object handle (stored in the
UiHandle property) and the handle class object, h. Use ishandle to test the
validity of Handle Graphics object handles:

% h is a handle object
>> isa(h,'handle')
ans =

1

% The uicontrol object handle is not a handle object
>> isa(h.UiHandle,'handle')
ans =

0

% The button object is not a graphics object
>> ishandle(h)
ans =

0

% The uicontrol is a graphics object handle
>> ishandle(h.UiHandle)
ans =

1

If you close the figure, the ishandle function determines that the Handle
Graphics handle is not valid:

>> close
>> ishandle(h.UiHandle)

ans =

0

h is still of class handle and is still a valid handle object:

>> isa(h,'handle')

ans =

1

5-14

The Handle Superclass

>> isvalid(h)

ans =

1

h is also of class button:

>> isa(h,'button')

ans =

1

When MATLAB Destroys Objects
MATLAB destroys objects in the workspace of a function when the function:

• Reassigns an object variable to a new value

• Does not use an object variable for the remainder of a function

• Function execution ends

When MATLAB destroys an object, it also destroys values stored in the
properties of the object and returns any computer memory associated with the
object to MATLAB or the operating system.

You do not need to free memory in handle classes. However, there can be
other operations that you want to perform when destroying an object. For
example, closing a file or shutting down an external program that the object
constructor started. You can define a delete method in your handle subclass
for these purposes.

See “Handle Class Destructor” on page 5-16 for more information.

5-15

5 Value or Handle Class — Which to Use

Handle Class Destructor

In this section...

“Basic Knowledge” on page 5-16

“Syntax of Class Destructor Method” on page 5-16

“When to Define a Destructor Method” on page 5-17

“Destructors in Class Hierarchies” on page 5-18

“Object Lifecycle” on page 5-18

“Restrict Explicit Object Deletion” on page 5-20

“Nondestructor Delete Methods” on page 5-21

Basic Knowledge

Terms and Concepts
Class destructor – a method named delete that MATLAB calls implicitly
before destroying an object of the a handle class. User-defined code can also
call delete explicitly to destroy a handle object.

Nondestructor – a method named delete that does not meet the syntax
requirements of a valid destructor. Consequently, MATLAB does not call this
method implicitly when destroying an object.

Table of method attributes: “Method Attributes” on page 7-5

Syntax of Class Destructor Method
When destroying an object, MATLAB implicitly calls the class destructor
method, if the class defines one. Create a destructor method by implementing
a method named delete. However, MATLAB recognizes a class method
named delete as the class destructor only if you define delete as an ordinary
method with the appropriate syntax.

To be a valid class destructor, the delete method:

• Must have one scalar input argument that is an object of the class.

5-16

Handle Class Destructor

• Must not define output arguments

• Cannot be Sealed, Static, or Abstract

In addition, destructors should not:

• Throw errors

• Create new handles to the object being destroyed

If you define a delete method that can be called with more than one input
argument, or that returns any output arguments, then MATLAB does not
recognize that method as the class destructor, and does not call it when
destroying an object of the class.

Declare delete as an ordinary method:

method
function delete(obj)

% obj is always scalar
...
end

end

Calling Delete on an Array
MATLAB calls the destructor method element-wise on an array of objects.
Because MATLAB calls the delete method separately for each element in an
object array, each delete method is passed only one scalar argument.

When to Define a Destructor Method
Use a class destructor to perform any necessary cleanup operations before
MATLAB destroys an object of the class.

For example, suppose an object opens a file for writing and you want to close
the file in your delete method. This delete function calls fclose on a file
identifier that the object’s FileID property stores:

function delete(obj)
fclose(obj.FileID);

end

5-17

5 Value or Handle Class — Which to Use

“The Filewriter Class” on page 2-18 is an example of a class that uses this
delete method.

Destructors in Class Hierarchies
If you create a hierarchy of classes, each class can define its own class
destructor method. When destroying an object, MATLAB calls the destructor
of each class in the hierarchy. Therefore, defining a delete method in a
handle subclass does not override the handle class delete method; the
subclass delete methods augment the superclass delete methods.

Inheriting a Sealed Delete Method
You cannot define a valid destructor that is Sealed. MATLAB returns an
error when you attempt to instantiate a class that defines a Sealed destructor.

Normally, declaring a method as Sealed prevents subclasses from overriding
that method. However, because destructors must be named delete, an
inherited method named delete that is Sealed does not prevent subclasses
from defining valid destructors.

For example, if a superclass defines a method named delete that is not a
valid destructor and is Sealed, then subclasses:

• Can define valid destructors (which are always named delete).

• Cannot define methods named delete that are not valid destructors.

Destructors in Heterogeneous Hierarchies
Heterogeneous class hierarchies (matlab.mixin.Heterogeneous) require
that all methods to which heterogeneous arrays are passed must be sealed.
However, the rule does not apply to class destructor methods. Because
destructor methods cannot be sealed, you can define a valid destructor in a
heterogeneous hierarchy that is not sealed, but does function as a destructor.

Object Lifecycle
MATLAB invokes the destructor delete method when the lifecycle of an
object ends. The lifecycle of an object ends when the object is:

5-18

Handle Class Destructor

• No longer referenced anywhere

• Explicitly deleted by calling delete on the handle

Inside a Function
The lifecycle of an object referenced by a local variable or input argument
exists from the time the variable is assigned until the time it is reassigned,
cleared, or no longer referenced within that function or any handle array.

A variable goes out of scope when you explicitly clear it or when its function
ends. When a variable goes out of scope, if its value belongs to a handle class
that defines a delete method, MATLAB calls that method. MATLAB defines
no ordering among variables in a function. Do not assume that MATLAB
destroys one value before another value when the same function contains
multiple values.

Sequence During Handle Object Destruction
MATLAB invokes the delete methods in the following sequence when
destroying an object:

1 The delete method for the class of the object

2 The delete method of each superclass class, starting with the immediate
superclasses and working up the hierarchy to the most general superclasses

MATLAB invokes the delete methods of superclasses at the same level in
the hierarchy in the order specified in the class definition. For example, the
following class definition specifies supclass1 before supclass2 so MATLAB
calls the delete function of supclass1 before the delete function of supclass2.

classdef myClass < supclass1 & supclass2

Superclass delete methods cannot call methods or access properties
belonging to a subclass.

After calling each delete method, MATLAB destroys the property values
belonging exclusively to the class whose method was called. The destruction
of property values that contain other handle objects can cause MATLAB to

5-19

5 Value or Handle Class — Which to Use

call the delete methods for those objects, if there are no other references
to those objects.

Destruction of Objects with Cyclic References
Consider a set of objects that reference other objects of the set such that the
references form a cyclic graph. In this case, MATLAB:

• Destroys the objects if they are referenced only within the cycle

• Does not destroy the objects as long as there is an external reference to any
of the objects from a MATLAB variable outside the cycle

MATLAB destroys the objects in the reverse of the order of construction.

Restrict Explicit Object Deletion
You can destroy handle objects by explicitly calling delete on the object:

delete(obj)

A class can prevent explicit destruction of an object by setting its delete
method Access attribute to private. MATLAB issues an error if you
explicitly call delete on a handle object whose delete method is private.
However, a method of the class can call the private delete method.

Similarly, if the class delete method Access attribute has a value of
protected, only methods of the class and any subclasses can explicitly delete
objects of that class.

However, when an object’s lifecycle ends, MATLAB calls the object’s delete
method when destroying the object regardless of method’s Access attribute
setting. See “Object Lifecycle” on page 5-18 for information on when MATLAB
destroys objects and “Sequence During Handle Object Destruction” on page
5-19 for information on how MATLAB calls object delete methods.

Inherited Private Delete Methods
Class destructor behavior differs from the normal behavior of an overridden
method. MATLAB executes each delete method of each superclass of an
object upon destruction, even if that delete method is not public.

5-20

Handle Class Destructor

When you explicitly call an object’s delete method, MATLAB checks the
delete method Access attribute in the class defining the object, but not in
the superclasses of the object. Therefore, a superclass with a private delete
method does not prevent the destruction of subclass objects.

Declaring a private delete method makes most sense for Sealed classes
because subclasses can define their own delete methods with public Access.

Nondestructor Delete Methods
A class can implement a method named delete that is not a valid class
destructor, and therefore is not called implicitly by MATLAB when destroying
an object. In this case, delete behaves like a normal method.

For example, if the superclass implements a Sealed method named delete
that is not a valid destructor, then MATLAB does not allow subclasses to
override this method.

A delete method defined by a value class cannot be a class destructor. See
“Basic Difference” on page 5-2 for information on the difference between a
value and handle class.

See “Syntax of Class Destructor Method” on page 5-16 for information on how
to implement a delete method that is a valid destructor.

5-21

5 Value or Handle Class — Which to Use

Finding Handle Objects and Properties

In this section...

“Finding Handle Objects” on page 5-22

“Finding Handle Object Properties” on page 5-22

Finding Handle Objects
The findobj method enables you to locate handle objects that meet certain
conditions.

function HM = findobj(H,<conditions>)

The findobj method returns an array of handles matching the conditions
specified.

Finding Handle Object Properties
The findprop method returns the meta.property object for the specified
object and property.

function mp = findprop(h,'PropertyName')

The findprop method returns the meta.property object associated with the
PropertyName property defined by the class of h. The property can also be a
dynamic property created by the addprop method of the dynamicprops class.

You can use the returned meta.property object to obtain information
about the property, such as querying the settings of any of its attributes.
For example, the following statements determine that the setting of the
AccountStatus property’s Dependent attribute is false.

ba = BankAccount(007,50,'open');

mp = findprop(ba,'AccountStatus'); % get meta.property object

mp.Dependent

ans =

0

“Class Metadata” on page 14-2 provides more information on meta-classes.

5-22

Implementing a Set/Get Interface for Properties

Implementing a Set/Get Interface for Properties

In this section...

“The Standard Set/Get Interface” on page 5-23

“Subclass hgsetget” on page 5-23

“Get Method Syntax” on page 5-23

“Set Method Syntax” on page 5-24

“Class Derived from hgsetget” on page 5-25

The Standard Set/Get Interface
The MATLAB Handle Graphics system implements an interface based on
set and get methods. These methods enable you to set or query the values
of graphics object properties. The hgsetget subclass of the handle class
provides implementations of these methods. Derive your class from hgsetget
to obtain similar set and get functionality.

Note The set and get methods referred to in this section are different from
property set access and property get access methods. See “Property Access
Methods” on page 6-14 for information on property access methods.

Subclass hgsetget
Classes inherit set and get methods from hgsetget:

classdef MyClass < hgsetget

Because hgsetget derives from the handle class, MyClass is also a handle
class.

Get Method Syntax
Get the value of an object property using the object handle, h, and the
property name:

v = get(h,'PropertyName');

5-23

5 Value or Handle Class — Which to Use

If you specify an array of handles with a single property name, get returns
the current property value for each object in H as a cell array of values, (CV):

CV = get(H,'PropertyName');

The CV array is always a column regardless of the shape of H.

When prop is a cell array of string property names and H is an array
of handles, get returns a cell array of values where each row in the cell
corresponds to an object in H and each column in the cell corresponds to a
property in prop. get returns the corresponding property values in an m-by-n
cell array, where m = length(H) and n = length(prop)

prop = {'PropertyName1','PropertyName2'};
CV = get(H,prop);

If you specify a handle array, but no property names, get returns a struct
array in which each structure in the array corresponds to an object in H. Each
field in the structure corresponds to a property defined by the class of H. The
value of each field is the value of the corresponding property. If you do not
assign an output variable, then H must be scalar.

SV = get(H);

See “Using Handle Arrays with Get” on page 5-28 for an example.

Set Method Syntax
The set method assigns the value of the specified property for the object with
handle H. If H is an array of handles, MATLAB assigns the property value to
the named property for each object in the array H.

set(H,'PropertyName',PropertyValue)

You can pass a cell array of property names and a cell array of property
values to set:

set(H,{'PropertyName1','PropertyName2'},...
{Property1Value,Property2Value})

5-24

Implementing a Set/Get Interface for Properties

If length(H) is greater than one, then the property value cell array can have
values for each property in each object. For example, if length(H) is 2 (two
object handles), then you can use an expression like this:

set(H,{'PropertyName1','PropertyName2'},...
{Property11Value,Property12Value;Property21Value,Property22Value})

The preceding statement is equivalent to the follow two statements:

set(H(1),'PropertyName1',Property11Value,'PropertyName2',Property12Value)
set(H(2),'PropertyName1',Property21Value,'PropertyName2',Property22Value)

If you specify a scalar handle, but no property names, set returns a struct
array with one field for each property in the class of H. Each field contains
an empty cell array.

SV = set(h);

See “Class Derived from hgsetget” on page 5-25 for an example.

Class Derived from hgsetget
This sample class defines a set/get interface and illustrates the behavior of
the inherited methods:

classdef LineType < hgsetget % subclass hgsetget

properties

Style = '-';

Marker = 'o';

end % Public properties

properties (SetAccess = protected)

Units = 'points';

end % Protected SetAccess

methods

function obj = LineType(s,m)

if nargin > 0

obj.Style = s;

obj.Marker = m;

end

end% LineType

function obj = set.Style(obj,val)

5-25

5 Value or Handle Class — Which to Use

if ~(strcmpi(val,'-') ||...

strcmpi(val,'--') ||...

strcmpi(val,'..'))

error('Invalid line style ')

end

obj.Style = val;

end % set.Style

function obj = set.Marker(obj,val)

if ~isstrprop(m,'graphic')

error('Marker must be a visible character')

end

obj.Marker = val;

end % set.Marker

end % methods

end % classdef

Create an instance of the class and save its handle:

h = LineType('--','*');

Query the value of any object property using the inherited get method:

get(h,'Marker')
ans =

*

Set the value of any property using the inherited set method:

set(h,'Marker','Q')

Property Access Methods Are Called
MATLAB calls any property access methods (set.Style or set.Marker in the
LineType class) when you use the set and get methods that are inherited
from the hgsetget class:

set(h,'Style','-.-')

Error using LineType>LineType.set.Style

Invalid line style

5-26

Implementing a Set/Get Interface for Properties

Using the set and get methods that are inherited from hgsetget invokes
any existing property access methods that would execute when assigning or
querying property values using dot notation:

h.Style = '-.-';
Error using LineType>LineType.set.Style
Invalid line style

See “Property Access Methods” on page 6-14 for more information on property
access methods.

Listing All Properties
You can create a struct containing object properties and their current values
using get with only a handle array as input.

For example, the struct SV contains fields whose names correspond to
property names. Each field contains the current value of the respective
property.

% Create a LineType object and save its handle
h = LineType('--','*');

% Query the property values of object h
SV = get(h)
SV =

Style: '--'
Marker: '*'
Units: 'points'

Create a struct containing the properties that have public SetAccess using
set with an object handle:

% Query setable property values
S = set(h)

S =

Style: {}
Marker: {}

5-27

5 Value or Handle Class — Which to Use

The LineType class defines the Units property with SetAccess = protected.
Therefore, S = set(h) does not create a field for this property in the sturct
S. set cannot return possible values for the properties.

Using Handle Arrays with Get
Suppose you create an array of LineType objects:

H = [LineType('..','z'),LineType('--','q')]

H =

1x2 LineType handle

Properties:
Style
Marker
Units

When H is an array of handles, get returns a (length(H)-by-1) cell array of
property values:

CV = get(H,'Style')
CV =

'..'
'--'

When H is an array of handles and you do not specify a property name,
get returns a struct array containing fields with name corresponding to
property-names. You must assign the output of get to a variable when H
is not scalar.

% Assign output of get for nonscalar H
SV = get(H)

SV =

2x1 struct array with fields:
Style
Marker

5-28

Implementing a Set/Get Interface for Properties

Units

Get the value of the Marker property from the second array element in the
SV struct array:

SV(2).Marker

ans =

q

Handle, Property Name, and Property Value Arrays
You can pass an array of handles, a cell array of property names, and a cell
array of property values to set. The property value cell array must have one
row of property values for each object in H and each row must have a value for
each property in the property name array:.

H = [LineType('..','z'),LineType('--','q')];
set(H,{'Style','Marker'},{'..','o';'--','x'})

The results of this call to set is:

H(1)

ans =

LineType handle

Properties:
Style: '..'

Marker: 'o'
Units: 'points'

H(2)

ans =

LineType handle

Properties:

5-29

5 Value or Handle Class — Which to Use

Style: '--'
Marker: 'x'
Units: 'points'

Customizing the Property List
You can customize the way property lists are displayed by redefining the
following methods in your subclass:

• setdisp— Called by set when you call set with no output arguments and
a single input parameter containing the handle array.

• getdisp— Called by get when you call get with no output arguments and
a single input parameter containing the handle array.

5-30

Controlling the Number of Instances

Controlling the Number of Instances

Limiting Instances
You can limit the number of instances of a class that can exist at any one time.
For example, a singleton class can have only one instance and provides a way
to access this instance. You can create a singleton class using these elements:

• A persistent variable to contain the instance

• A sealed class (Sealed attribute set to true) to prevent subclassing

• A private constructor (Access attribute set to private)

• A static method to return the handle to the instance, if it exists, or to create
the instance when needed.

Implementing a Singleton Class
The following skeletal class definition shows how you can approach the
implementation of a class that allows you to create only one instance at a time:

classdef (Sealed) SingleInstance < handle
methods (Access = private)

function obj = SingleInstance
end

end
methods (Static)

function singleObj = getInstance
persistent localObj
if isempty(localObj) || ~isvalid(localObj)

localObj = SingleInstance;
end
singleObj = localObj;

end
end

end

The getInstance static method returns a handle to the object created, which
the class stores in a persistent variable. getInstance creates an instance
only the first time called in a session or when the object becomes invalid.
For example:

5-31

5 Value or Handle Class — Which to Use

sobj = SingleInstance.getInstance
sobj =

SingleInstance handle with no properties.
Methods, Events, Superclasses

As long as sobj exists as a valid handle, calling getInstance returns a
handle to the same object. If you delete sobj, then calling getInstance
creates an object and returns the handle.

delete(sobj)
isvalid(sobj)
ans =

0
sobj = SingleInstance.getInstance;
isvalid(sobj)
ans =

1

5-32

6

Properties — Storing Class
Data

• “How to Use Properties” on page 6-2

• “Defining Properties” on page 6-5

• “Property Attributes” on page 6-8

• “Mutable and Immutable Properties” on page 6-13

• “Property Access Methods” on page 6-14

• “Properties Containing Objects” on page 6-24

• “Dynamic Properties — Adding Properties to an Instance” on page 6-26

6 Properties — Storing Class Data

How to Use Properties

In this section...

“What Are Properties” on page 6-2

“Types of Properties” on page 6-3

What Are Properties
Properties encapsulate the data that belongs to instances of classes. Data
contained in properties can be public, protected, or private. This data can
be a fixed set of constant values, or it can be dependent on other values
and calculated only when queried. You control these aspects of property
behaviors by setting property attributes and by defining property-specific
access methods.

See “Property Attributes” on page 6-8 for a summary of property attributes.

Flexibility of Object Properties
In some ways, properties are like fields of a struct object. However, storing
data in an object property provides more flexibility. Properties can:

• Define a constant value that you cannot change outside the class definition.
See “Properties with Constant Values” on page 13-2

• Calculate its value based on the current value of other data. See “Property
Get Methods” on page 6-18

• Execute a function to determine if an attempt to assign a value meets a
certain criteria. See “Property Set Methods” on page 6-16

• Trigger an event notification when any attempt is made to get or set its
value. See “Property-Set and Query Events” on page 9-14

• Restrict access by other code to the property value. See the SetAccess and
GetAccess attributes “Property Attributes” on page 6-8

• Control whether its value is saved with the object in a MAT-file. See “The
Default Save and Load Process” on page 11-2

6-2

How to Use Properties

Types of Properties
There are two types of properties:

• Stored properties — Use memory and are part of the object

• Dependent properties — No allocated memory and the get access method
calculates the value when queried

Features of Stored Properties

• Can assign an initial value in the class definition

• Property value is stored when you save the object to a MAT-file

• Can use a set access method to control possible values, but you are not
required to use such methods.

When to Use Stored Properties

• You want to be able to save the property value in a MAT-file

• The property value is not dependent on other property values

Features of Dependent Properties
Dependent properties save memory because property values that depend on
other values are calculated only when needed.

When to Use Dependent Properties
Define properties as dependent when you want to:

• Compute the value of a property from other values (for example, you can
compute area from Width and Height properties).

• Provide a value in different formats depending on other values. For
example, the size of a push button in values determined by the current
setting of its Units property.

• Provide a standard interface where a particular property is or is not used,
depending on other values. For example, different computer platforms can
have different components on a toolbar).

6-3

6 Properties — Storing Class Data

“Property Access Methods” on page 6-14 provides information on defining
property access methods.

6-4

Defining Properties

Defining Properties

In this section...

“Property Definition Block” on page 6-5

“Accessing Property Values” on page 6-6

“Inheritance of Properties” on page 6-6

“Specifying Property Attributes” on page 6-7

Property Definition Block
The following illustration shows a typical property specification. The
property and end keywords delineate a block of code that defines properties
having the same attribute settings.

Property name

properties block

properties keyword begins definition block.

end keyword terminates definition block.

properties

 Coefficients = [0 0 1];

end

Default value

(SetAccess = protected)

Attribute specification

6-5

6 Properties — Storing Class Data

Assigning a Default Value
The preceding example shows the Coefficients property specified as having
a default value of [0 0 1].

You can initialize property values with MATLAB expressions. However, these
expressions cannot refer to the class that you are defining in any way, except
to call class static methods. MATLAB executes expressions that create initial
property values only when initializing the class, which occurs just before
first using the class. See “Defining Default Values” on page 3-11 for more
information about how MATLAB evaluates default value expressions.

Accessing Property Values
Property access syntax is like MATLAB structure field syntax. For example,
assume there is a polynomial class called polyno that defines a Coefficients
property. If you created a polyno object p:

p = polyno([1 0 -2 -3]); % Create an instance p (this
code does not execute)

you can access this property as follows:

c = p.Coefficients; % Assign the current property value to c
p.Coefficients = [4 0 -2 3 5]; % Assign new property values

When you access a property, MATLAB performs any operations that the
property requires. For example, executing a property set or get access method
and triggering property access events.

See “Implementing a Set/Get Interface for Properties” on page 5-23 for
information on how to define set and get methods for properties.

Inheritance of Properties
When you derive one class from another class, the derived (subclass) class
inherits all the properties of the superclass. In general, subclasses define
only properties that are unique to that particular class. Superclasses define
properties that more than one subclass use.

6-6

Defining Properties

Specifying Property Attributes
Attributes specified with the properties key word apply to all property
definitions that follow in that block. If you want to apply attribute settings to
certain properties only, reuse the properties keyword and create another
property block for those properties.

For example, the following code shows the SetAccess attribute set to private
for the IndependentVar and Order properties, but not for the Coefficients
property:

properties
 Coefficients = [0 0 1];
end
properties (SetAccess = private)
 IndependentVar
 Order = 0;
end

These properties (and any others placed in
this block) have private set access

6-7

6 Properties — Storing Class Data

Property Attributes

Table of Property Attributes
All properties support the attributes listed in the following table. Attributes
enable you to modify the behavior of properties. Attribute values apply to all
properties defined within the properties block that specifies the nondefault
values.

Attribute Name Class Description

AbortSet logical

default = false

If true, and this property belongs to a
handle class, then MATLAB does not
set the property value if the new value
is the same as the current value. This
approach prevents the triggering of
property PreSet and PostSet events.

Abstract logical

default = false

If true, the property has no
implementation, but a concrete
subclass must redefine this property
without Abstract being set to true.

• Abstract properties cannot define set
or get access methods. See “Property
Access Methods” on page 6-14.

• Abstract properties cannot define
initial values. See “Assigning a
Default Value” on page 6-6.

• All subclasses must specify the same
values as the superclass for the
property SetAccess and GetAccess
attributes.

• Abstract=true use with the class
attribute Sealed=false (the default).

6-8

Property Attributes

(Continued)

Attribute Name Class Description

Access • enumeration, default
= public

• meta.class object

• cell array of
meta.class objects

public – unrestricted access

protected – access from class or
subclasses

private – access by class members only
(not subclasses)

List of classes that have get and set
access to this property. Specify classes
as meta.class objects in the form:

• A single meta.class object

• A cell array of meta.class objects.
An empty cell array, {}, is the same
as private access.

See “Controlling Access to Class
Members” on page 10-24

Use Access to set both SetAccess and
GetAccess to the same value. Query
the values of SetAccess and GetAccess
directly (not Access).

Constant logical

default = false

Set to true if you want only one value for
this property in all instances of the class:

• Subclasses inherit constant
properties, but cannot change
them.

• Constant properties cannot be
Dependent.

• SetAccess is ignored.

See “Properties with Constant Values”
on page 13-2 for more information.

6-9

6 Properties — Storing Class Data

(Continued)

Attribute Name Class Description

Dependent logical

default = false

If false, property value is stored
in object. If true, property value is
not stored in object. The set and get
functions cannot access the property
by indexing into the object using the
property name.

MATLAB does not display in the
command window the names and values
of Dependent properties that do not
define a get method (scalar object display
only).

• “Using a Dependent Property” on
page 2-27

• “Property Get Methods” on page 6-18

• “Avoiding Property Initialization
Order Dependency” on page 11-23

GetAccess enumeration

default = public

public — unrestricted access

protected — access from class or
subclasses

private— access by class members only
(not from subclasses)

List classes that have get access to this
property. Specify classes as meta.class
objects in the form:

• A single meta.class object

• A cell array of meta.class objects.
An empty cell array, {}, is the same
as private access.

6-10

Property Attributes

(Continued)

Attribute Name Class Description

See “Controlling Access to Class
Members” on page 10-24

MATLAB does not display in the
command window the names and values
of properties having protected or
private GetAccess or properties whose
Hidden attribute is true.

The struct function defines fields for
all properties when converting objects
to structs.

GetObservable logical

default = false

If true, and it is a handle class property,
then you can create listeners for access
to this property. The listeners are called
whenever property values are queried.
See “Property-Set and Query Events” on
page 9-14

Hidden logical

default = false

Determines whether the property should
be shown in a property list (e.g., Property
Inspector, call to set or get, etc.).

MATLAB does not display in the
command window the names and values
of properties whose Hidden attribute is
true or properties having protected or
private GetAccess.

6-11

6 Properties — Storing Class Data

(Continued)

Attribute Name Class Description

SetAccess enumeration

default = public

public — unrestricted access

protected — access from class or
subclasses

private— access by class members only
(not from subclasses)

immutable — property can be set only
in the constructor.

See “Mutable and Immutable Properties”
on page 6-13

List classes that have set access to this
property. Specify classes as meta.class
objects in the form:

• A single meta.class object

• A cell array of meta.class objects.
An empty cell array, {}, is the same
as private access.

See “Controlling Access to Class
Members” on page 10-24

SetObservable logical

default = false

If true, and it is a handle class property,
then you can create listeners for access
to this property. The listeners are called
whenever property values are modified.
See “Property-Set and Query Events” on
page 9-14

Transient logical

default = false

If true, property value is not saved
when object is saved to a file. See
“Understanding the Save and Load
Process” on page 11-2 for more about
saving objects.

6-12

Mutable and Immutable Properties

Mutable and Immutable Properties

Setting Property Values
The property SetAccess attribute enables you to determine under what
conditions code can modify object property values. There are four levels of set
access that provide varying degrees of access to object property values:

• Public set access means any code with access to an object can set public
property values. There are differences between the behavior of handle and
value classes with respect to modifying object properties. See “Modifying
Objects” on page 3-51 for information on these differences.

• Protected set access — only code executing from within class methods or
methods of subclasses can set property values. You cannot change the
value of an object property unless the class or any of its subclasses defines
a method to do so.

• Private set access — only the defining class can set property values. You
can change the value of an object property only if the class defines a method
to perform this action.

• Immutable set access — only the class constructor can set property values.
You cannot change the value of an object property.

6-13

6 Properties — Storing Class Data

Property Access Methods

In this section...

“Property Access Methods” on page 6-14

“Property Set Methods” on page 6-16

“Property Get Methods” on page 6-18

“Set and Get Methods for Dependent Properties” on page 6-18

“Set and Get Method Execution and Property Events” on page 6-21

“Access Methods and Subscripted Reference and Assignment” on page 6-22

“Performing Additional Steps with Property Access Methods” on page 6-22

Property Access Methods
Property access methods execute specific code whenever the associated
property’s value is referenced or assigned a new value. These methods enable
you to perform a variety of operations:

• Execute code before assigning property values to perform actions such as:

- Impose value range restrictions (“Restricting Properties to Specific
Values” on page 2-25)

- Check for proper types and dimensions

- Provide error handling

• Execute code before returning the current values of properties to perform
actions such as:

- Calculate the value of properties that do not store values (for an example,
see “Using a Dependent Property” on page 2-27)

- Change the value of other properties

- Trigger events (for an example, see “Defining and Triggering an Event”
on page 9-4)

Property access methods execute automatically whenever you query or set
the corresponding property values.

6-14

Property Access Methods

Restrictions on Access Methods
You can define property access methods only:

• For concrete properties (that is, properties that are not abstract)

• Within the class that defines the property (unless the property is abstract
in that class, in which case the concrete subclass must define the access
method).

MATLAB has no default set or get property access methods. Therefore, if you
do not define property access methods, MATLAB software does not invoke
any methods before assigning or returning property values.

Once defined, only the set and get methods can set and query the actual
property values. See “Set Method Behavior” on page 6-17 for information on
cases where MATLAB does not call property set methods.

Note Property set and get access methods are not equivalent to user-callable
set and get methods used to access property values from an instance of the
class. See “Implementing a Set/Get Interface for Properties” on page 5-23 for
information on user-callable set and get methods.

Access Methods Cannot Call Other Functions to Access Property
Values
You can set and get property values only from within your property set or get
access method. You cannot call another function from the set or get method
and attempt to access the property value from that function.

For example, an anonymous function that calls another function to do the
actual work cannot access the property value. Similarly, an ordinary access
function cannot call another function to access the property value.

Defining Access Methods
Access methods have special names that include the property’s name.
Therefore, get.PropertyName executes whenever PropertyName is referenced
and set.PropertyName executes whenever PropertyName is assigned a new
value.

6-15

6 Properties — Storing Class Data

Define property access methods in a methods block that specifies no
attributes. You cannot call these methods, MATLAB calls them when any
code accesses the properties. Therefore, property access methods do not
appear in the list of class methods returned by the methods command and
are not included in the meta.class object’s Methods property. However, the
meta.property object’s SetMethod property contains a function handle to the
property’s set method and the GetMethod property contains a function handle
to the property’s get method.

For example, if the class myClass defines a set function for its Text property,
you can obtain a function handle to this method from the meta.class object:

m = ?myClass;

m.Properties{1}.SetMethod % Assuming Text is the first property in the cell array

ans =

@\mydir\@myClass\myClass.m>myClass.set.Text % This is a function handle

The meta.class object (m) contains meta.property objects corresponding
to each class property in its Properties property. This example assumes
that the Text property corresponds to the first meta.property object in the
cell array of meta.property objects. The order of the class properties in the
meta.class Properties property is the same as the order in which the class
definition defines the properties.

“Class Metadata” on page 14-2 provides more information on using
meta-classes.

Function handles discusses the use of function handles.

Property Set Methods
Property set methods have the following syntax, where PropertyName is the
name of the property.

methods % No method attributes
function obj = set.PropertyName(obj,value) % Value class

end

Here obj is the object whose property is being assigned a value and value
is the new value that is assigned to the property.

6-16

Property Access Methods

Value class set functions must return the object with the new value for the
property assigned. Value classes replace the object whose property is being
assigned with the object returned by the set method. Handle classes do not
need to return the modified object.

methods % No method attributes
function set.PropertyName(obj,value) % Handle class

end

The property set method can perform actions like error checking on the input
value before taking whatever action is necessary to store the new property
value.

function obj = set.PropertyName(obj,value)
if ~(value > 0)

error('Property value must be positive')
else

obj.PropertyName = value;
end

end

See “Restricting Properties to Specific Values” on page 2-25 for an example of
a property set method.

Set Method Behavior
If a property set method exists, MATLAB calls it whenever a value is assigned
to that property. However, MATLAB does NOT call property set methods
in the following cases:

• Assigning a value to a property from within its own property set method,
which prevents recursive calling of the set method

• Specifying default values in class definitions do not invoke the set method

• Assigning a property to its default value, which is specified in the class
definition

• Copying a value object (that is, not derived from the handle class). Neither
the set or get method is called when copying property values from one
object to another.

6-17

6 Properties — Storing Class Data

• Assigning a property value that is the same as the current value when
the property’s AbortSet attribute is true does not call the property’s set
method. See “Aborting Set When Value Does Not Change” on page 9-31 for
more information on this attribute.

When assigning a property value, the calling function’s copy of the object that
has been passed to the set method reflects the changed value. Therefore, an
assignment to even a single property is able to affect the whole object. This
behavior enables a set method to change other properties in the object as well
as its designated property.

For example, a graphics window object can have a Units property and a Size
property. Changing the Units property can also require a change to the
values of the Size property to reflect the new units.

Property Get Methods
MATLAB calls a property’s get method whenever the property value is
queried. For example, passing a property value in the following statement
causes the method get.XYData to execute, if it exists.

plot(obj.XYData)

Property get methods have the following syntax, where PropertyName is the
name of the property. The function must return the property value.

methods % No method attributes
function value = get.PropertyName(obj)

end

Set and Get Methods for Dependent Properties
Dependent properties do not store data because the value of a dependent
property depends on the current state of something else. Dependent
properties must define a get method to determine the value for the property,
when queried. Typically, the property get method queries other property
values to determine what value to return for the dependent property.

For example, suppose an Account object contains a dependent property called
Balance and concrete property called Currency:

6-18

Property Access Methods

classdef Account
properties

Get Method for Dependent Property
One application of a property get method is to determine the value of a
property only when it you need it, and avoid storing the value. To use this
approach, set the property’s Dependent attribute to true:

properties (Dependent = true)
PropertyName

end

Now the get method for the PropertyName property determines the value of
that property and assigns it to the object from within the method:

function value = get.PropertyName(obj)
value = calculateValue;
...

end

The get method calls a function or static method calculateValue to calculate
the property value and returns value to the code accessing the property.
The property get method can take whatever action is necessary within the
method to produce the output value.

“Using a Dependent Property” on page 2-27 provide an example of a property
get method.

When to Use Set Methods with Dependent Properties
While a dependent property does not store its value, there are situations in
which you might want to define a set method for a dependent property.

For example, suppose you have a class that changes the name of a property
from OldPropName to NewPropName. You want to continue to allow the use of
the old name without exposing it to new users. You can make OldPropName
a dependent property with set and get methods as show in the following
example:

6-19

6 Properties — Storing Class Data

properties
NewPropName

end
properties (Dependent, Hidden)

OldPropName
end
methods

function obj = set.OldPropName(obj,val)
obj.NewPropName = val;

end
function value = get.OldPropName(obj)

value = obj.NewPropName;
end

end

There is no memory wasted by storing both old and new property values, and
code that accesses OldPropName continues to work as expected.

It is sometimes useful for a set method of a dependent property to assign
values to other properties of the object. Assignments made from property set
methods cause the execution of any set methods defined for those properties.
See “Using a Dependent Property” on page 2-27 for an example.

When to Use Private Set Access with Dependent Properties
If you use a dependent property only to return a value, then do not define a
set access method for the dependent property. Instead, set the SetAccess
attribute of the dependent property to private. For example, consider the
following get method for the MaxValue property:

methods
function mval = get.MaxValue(obj)

mval = max(obj.BigArray(:));
end

end

This example uses the MaxValue property to return a value that it calculates
only when queried. For this application, define the MaxValue property as
dependent and private:

properties (Dependent, SetAccess = private)

6-20

Property Access Methods

MaxValue
end

Set and Get Method Execution and Property Events
MATLAB software generates events before and after set and get operations.
You can use these events to inform listeners that property values have been
referenced or assigned. The timing of event generation is as follows:

• PreGet— Triggered before calling the property get method

• PostGet— Triggered after the property get method has returned its value

If a class computes a property value (Dependent = true), then the behaviors
of its set events are like the get events:

• PreSet— Triggered before calling the property set method

• PostSet— Triggered after calling the property set method

If a property is not computed (Dependent = false, the default), then the
assignment statement with the set method generates the events:

• PreSet — Triggered before assigning the new property value within the
set method

• PostSet — Triggered after assigning the new property value within the
set method

“Events and Listeners — Concepts” on page 9-11 provides general information
about events and listeners.

“Creating Property Listeners” on page 9-27 provides information about using
property events.

“The PostSet Event Listener” on page 9-47 shows an example of a property
listener.

“Create a Property Set Listener” on page 9-8 is another example that uses
property events.

6-21

6 Properties — Storing Class Data

Access Methods and Subscripted Reference and
Assignment
Use subscripting as a way to reference or assign property values (that is, a
= obj.prop(6) or obj.prop(6) = a) without interfering with property set
and get methods. When using subscripted reference, the get method returns
the whole property value and MATLAB accesses the value referenced by
subscripting that object.

For subscripted assignment, MATLAB:

• Invokes the get method to get the property value

• Performs the subscripted assignment into the returned property

• Passes the new property value to the set method

MATLAB always passes scalar objects to set and get methods. When reference
or assignment occurs on an object array, the set and get methods are called
in a loop.

See “Assigning to Read-Only Properties Containing Objects” on page 6-24 for
related information.

Performing Additional Steps with Property Access
Methods
Property access methods are useful in cases where you want to perform some
additional steps before assigning or returning a property value. For example,
the Testpoint class uses a property set method to check the range of a value.
It then applies scaling if it is within a particular range, and set it to NaN if
it is not.

The property get methods applies a scale factor before returning its current
value:

classdef Testpoint
properties (Dependent)

expectedResult = [];
end
properties(Constant)

6-22

Property Access Methods

scalingFactor = 0.001;
end
methods

function obj = set.expectedResult(obj,erIn)
if erIn >= 0 && erIn <= 100

erIn = erIn.*obj.scalingFactor
obj.expectedResult = erIn;

else
obj.expectedResult = NaN;

end
end
function er = get.expectedResult(obj)

er = obj.expectedResult/obj.scalingFactor;
end

end
end

6-23

6 Properties — Storing Class Data

Properties Containing Objects

Assigning to Read-Only Properties Containing
Objects
When a class defines a property with private or protected SetAccess, and that
property contains an object which itself has properties, assignment behavior
depends on whether the property contains a handle or a value object:

• Handle object – you can set properties on handle objects contained in
read-only properties

• Value object – you cannot set properties on value object contained in
read-only properties.

These example classes illustrate this assignment behavior:

• ReadOnlyProps – class with two read-only properties. The class constructor
assigns a handle object of type HanClass to the PropHandle property and a
value object of type ValClass to the PropValue property.

• HanClass – handle class with public property

• ValClass – value class with public property

classdef ReadOnlyProps
properties(SetAccess = private)

PropHandle
PropValue

end
methods

function obj = ReadOnlyProps
obj.PropHandle = HanClass;
obj.PropValue = ValClass;

end
end

end

classdef HanClass < handle
properties

6-24

Properties Containing Objects

Hprop
end

end

classdef ValClass
properties

Vprop
end

end

Create an instance of the ReadOnlyProps class:

a = ReadOnlyProps

a =

ReadOnlyProps

Properties:
PropHandle: [1x1 HanClass]
PropValue: [1x1 ValClass]

Use the private PropHandle property to set the property of the HanClass
object it contains:

a.PropHandle.Hprop = 7;
a.PropHandle.Hprop

ans =

7

Attempting to make an assignment to the value class object property is not
allowed:

a.PropValue.Vprop = 11;
Setting the 'PropValue' property of the 'ReadOnlyProps' class is not allowe

6-25

6 Properties — Storing Class Data

Dynamic Properties — Adding Properties to an Instance

In this section...

“What Are Dynamic Properties” on page 6-26

“Defining Dynamic Properties” on page 6-27

“Responding to Dynamic-Property Events” on page 6-29

“Defining Property Access Methods for Dynamic Properties” on page 6-31

“Dynamic Properties and ConstructOnLoad” on page 6-32

What Are Dynamic Properties
You can attach properties to objects without defining these properties in the
class definition. These dynamic properties are sometimes referred to as
instance properties. Use dynamic properties to attach temporary data to
objects or assign data that you want to associate with a particular instance of
a class, but not all objects of that class.

It is possible for more than one program to define dynamic properties on the
same object so you must take care to avoid name conflicts.

Characteristics of Dynamic Properties
Once defined, dynamic properties behave much like class-defined properties:

• Set and query the values of dynamic properties using dot notation (see
“Assigning Data to the Dynamic Property” on page 6-28)

• MATLAB saves and loads dynamic properties when you save and load
the objects to which they are attached (see “Saving and Loading Dynamic
Properties” on page 11-20 and “Dynamic Properties and ConstructOnLoad”
on page 6-32)

• Define attributes for dynamic property (see “Setting Dynamic Property
Attributes” on page 6-27).

• Add property set and get access methods (see “Defining Property Access
Methods for Dynamic Properties” on page 6-31)

6-26

Dynamic Properties — Adding Properties to an Instance

• Listen for dynamic property events (see “Responding to Dynamic-Property
Events” on page 6-29)

• Access dynamic property values from object arrays, with restricted syntax
(see “Object Arrays with Dynamic Properties” on page 8-10)

Defining Dynamic Properties
Any class that is a subclass of the dynamicprops class (which is itself a
subclass of the handle class) can define dynamic properties using the addprop
method. The syntax is:

P = addprop(H,'PropertyName')

where:

P is an array of meta.DynamicProperty objects

H is an array of handles

PropertyName is the name of the dynamic property you are adding to each
object

Naming Dynamic Properties
Use only valid names when naming dynamic properties (see “Variable
Names”). In addition, do not use names that:

• Are the same as the name of a class method

• Are the same as the name of a class event

• Contain a period (.)

Setting Dynamic Property Attributes
Use the meta.DynamicProperty object associated with the dynamic property
to set property attributes. For example:

P.Hidden = true;

Remove the dynamic property by deleting its meta.DynamicProperty object:

6-27

6 Properties — Storing Class Data

delete(P);

The property attributes Constant and Abstract have no meaning for dynamic
properties and setting the value of these attributes to true has no effect.

Assigning Data to the Dynamic Property
Suppose, you are using a predefined set of GUI widget classes (buttons,
sliders, check boxes, etc.) and you want to store the location on a grid of each
instance of the widget class. Assume the widget classes are not designed to
store location data for your particular layout scheme and you want to avoid
creating a map or hash table to maintain this information separately.

Assuming the button class is a subclass of dynamicprops, you could add a
dynamic property to store your layout data. Here is a simple class to create a
uicontrol button:

classdef button < dynamicprops

properties

UiHandle

end

methods

function obj = button(pos)

if nargin > 0

if length(pos) == 4

obj.UiHandle = uicontrol('Position',pos,...

'Style','pushbutton');

else

error('Improper position')

end

end

end

end

end

Create an instance of the button class, add a dynamic property, and set its
value:

b1 = button([20 40 80 20]); % button class uses HG-type position layout

b1.addprop('myCoord'); % Add a dynamic property

b1.myCoord = [2,3]; % Set the property value

6-28

Dynamic Properties — Adding Properties to an Instance

You can access the dynamic property just like any other property, but only on
the instance on which you defined it:

b1.myCoord

ans =

2 3

Responding to Dynamic-Property Events
You can attach listeners to dynamicprops objects to monitor the addition
of dynamic properties to the object. You can also monitor the removal of
dynamic properties, which occurs when you delete the object.

The dynamicprops class defines two events and inherits one from handle:

• ObjectBeingDestroyed— Inherited from the handle class.

• PropertyAdded— Triggered when you add a dynamic property to an object
derived from the dynamicprops class.

• PropertyRemoved—Triggered when you delete the meta.DynamicProperty
object associated with the dynamic property.

Suppose you define a button object, as described in the previous section:

b2 = button([20 40 80 20]);

Create a function to attach listeners to the button object, b2, and a listener
callback function:

function listenDynoEvent(obj)
addlistener(obj,'PropertyAdded',@eventPR);
addlistener(obj,'PropertyRemoved',@eventPR);
function eventPR(src,evnt)

mc = metaclass(src);
fprintf(1,'%s %s \n',mc.Name,'object')
fprintf(1,'%s %s \n','Event triggered:',evnt.EventName)

end
end

6-29

6 Properties — Storing Class Data

Triggering the PropertyAdded Event

Add the listeners to the button object, b2. Then, add a dynamic property,
myCoord.

% add listeners

listenDynoEvent(b2)

% add dynamic property and save meta.DynamicProperty object

mp = b2.addprop('myCoord');

The listener callback function, eventPR, executes and displays the object
class and event name:

button object
Event triggered: PropertyAdded

Delete the dynamic property by deleting the meta.DynamicProperty object:

delete(mp)
button object
Event triggered: PropertyRemoved

Obtain the meta.DynamicProperty object for a dynamic property using
the handle findprop method. Use findprop if you do not have the object
returned by addprop:

mp = findprop(b2,'myCoord');

Dynamic Properties and Ordinary Property Events
Dynamic properties support property set and get events so you can define
listeners for these properties. Listeners are bound to the particular dynamic
property for which you define them. Therefore, if you delete a dynamic
property, and then create another one with the same name, the listeners
do not respond to events generated by the new property, even though the
property has the same name as the property for which the event was defined.

Having a listener defined for a deleted dynamic property does not cause an
error, but the listener callback is never executed.

6-30

Dynamic Properties — Adding Properties to an Instance

“Property-Set and Query Events” on page 9-14 provides more information on
how to define listeners for these events.

Defining Property Access Methods for Dynamic
Properties
Dynamic properties enable you to add properties to class instances without
modifying class definitions. You can also define property set access or get
access methods without creating new class methods. See “Property Access
Methods” on page 6-14 for more on the purpose and techniques of these
methods.

Note You can set and get the property values only from within your property
access methods. You cannot call another function from the set or get method
and attempt to access the property value from that function.

Here are the steps for creating a property access method:

• Define a function that implements the desired operations you want to
perform before the property set or get occurs. These methods must have
the following signatures: mySet(obj,val) or val = myGet(obj)

• Obtain the dynamic property’s corresponding meta.DynamicProperty
object.

• Assign a function handle pointing to your set or get property function to
the meta.DynamicProperty object’s GetMethod or SetMethod property.
This function does not need to be a method of the class and you cannot
use a naming scheme like set.PropertyName. Instead, use any valid
function name.

Suppose you want to create a property set function for the button class
dynamic property myCoord created previously. Write the function as follows:

function set_myCoord(obj,val)

if ~(length(val) == 2) % require two values

error('myCoords require two values ')

end

obj.myCoord = val; % set property value

6-31

6 Properties — Storing Class Data

end

Because button is a handle class, the property set function does not need to
return the object as an output argument. Assign the value to the property
if the value is valid.

Use the handle class method findprop to get the meta.DynamicProperty
object:

mb1 = b1.findprop('myCoord');
mb1.SetMethod = @set_myCoord;

The property set function is now called whenever you set this property:

b1.myCoord = [1 2 3] % length must be two
Error using button.set_myCoord
myCoords require two values

Dynamic Properties and ConstructOnLoad
Setting a class’s ConstructOnLoad attribute to true causes MATLAB to call
the class constructor when loading the class. Dynamic properties are saved
and restored when loading an object. If you are creating dynamic properties
from the class constructor, you can cause a conflict if you also set the class’s
ConstructOnLoad attribute to true. Here’s the sequence:

• A saved object saves the names and values of properties, including dynamic
properties

• When loaded, a new object is created and all properties are restored to the
values at the time the object was saved

• Then, the ConstructOnLoad attribute causes a call to the class constructor,
which would create another dynamic property with the same name as the
loaded property (see “The Default Save and Load Process” on page 11-2 for
more on the load sequence)

• MATLAB prevents a conflict by loading the saved dynamic property, and
does not execute addprop when calling the constructor.

If it is necessary for you to use ConstructOnLoad and you add dynamic
properties from the class constructor (and want the constructor’s call to
addprop to be executed at load time) then set the dynamic property’s

6-32

Dynamic Properties — Adding Properties to an Instance

Transient attribute to true. This setting prevents the property from being
saved. For example:

classdef (ConstructOnLoad) MyClass < dynamicprops
function obj = MyClass

P = addprop(obj,'DynProp');
P.Transient = true;
...

end
end

6-33

6 Properties — Storing Class Data

6-34

7

Methods — Defining Class
Operations

• “How to Use Methods” on page 7-2

• “Method Attributes” on page 7-5

• “Ordinary Methods” on page 7-7

• “Class Constructor Methods” on page 7-16

• “Static Methods” on page 7-25

• “Overloading Functions for Your Class” on page 7-27

• “Object Precedence in Expressions Using Operators” on page 7-30

• “Class Methods for Graphics Callbacks” on page 7-32

7 Methods — Defining Class Operations

How to Use Methods

In this section...

“Class Methods” on page 7-2

“Method Naming” on page 7-3

Class Methods
Methods are functions that implement the operations performed on objects
of a class. Methods, along with other class members support the concept of
encapsulation—class instances contain data in properties and class methods
operate on that data. This allows the internal workings of classes to be hidden
from code outside of the class, and thereby enabling the class implementation
to change without affecting code that is external to the class.

Methods have access to private members of their class including other
methods and properties. This enables you to hide data and create special
interfaces that must be used to access the data stored in objects.

See “Methods That Modify Default Behavior” on page 15-2 for a discussion of
how to create classes that modify standard MATLAB behavior.

See “Class Files” on page 3-2 for information on the use of @ and path
directors and packages to organize your class files.

See “Methods In Separate Files” on page 3-16 for the syntax to use when
defining classes in more than one file.

Kinds of Methods
There are specialized kinds of methods that perform certain functions or
behave in particular ways:

• Ordinary methods are functions that act on one or more objects and
return some new object or some computed value. These methods are
like ordinary MATLAB functions that cannot modify input arguments.
Ordinary methods enable classes to implement arithmetic operators and

7-2

How to Use Methods

computational functions. These methods require an object of the class on
which to operate. See “Ordinary Methods” on page 7-7.

• Constructor methods are specialized methods that create objects of the
class. A constructor method must have the same name as the class
and typically initializes property values with data obtained from input
arguments. The class constructor method must return the object it creates.
See “Class Constructor Methods” on page 7-16

• Destructor methods are called automatically when the object is destroyed,
for example if you call delete(object) or there are no longer any
references to the object. See “Handle Class Destructor” on page 5-16

• Property access methods enable a class to define code to execute whenever a
property value is queried or set. See “Property Access Methods” on page
6-14

• Static methods are functions that are associated with a class, but do not
necessarily operate on class objects. These methods do not require an
instance of the class to be referenced during invocation of the method,
but typically perform operations in a way specific to the class. See “Static
Methods” on page 7-25

• Conversion methods are overloaded constructor methods from other
classes that enable your class to convert its own objects to the class of the
overloaded constructor. For example, if your class implements a double
method, then this method is called instead of the double class constructor
to convert your class object to a MATLAB double object. See “Converting
Objects to Another Class” on page 15-11 for more information.

• Abstract methods serve to define a class that cannot be instantiated itself,
but serves as a way to define a common interface used by a number of
subclasses. Classes that contain abstract methods are often referred to
as interfaces. See “Defining Abstract Classes” on page 10-77 for more
information and examples.

Method Naming
The name of a function that implements a method can contain dots (for
example, set.PropertyName) only if the method is one of the following:

• Property set/get access method (see “Property Access Methods” on page
6-14)

7-3

7 Methods — Defining Class Operations

• Conversion method that converts to a package-qualified class, which
requires the use of the package name (see “Packages Create Namespaces”
on page 4-20)

You cannot define property access or conversion methods as local functions,
nested functions, or separately in their own files. Class constructors and
package-scoped functions must use the unqualified name in the function
definition; do not include the package name in the function definition
statement.

See “Defining Methods” on page 7-7 for more information on how you can
define methods.

See “Rules for Naming to Avoid Conflicts” on page 7-28 for related information.

7-4

Method Attributes

Method Attributes

Table of Method Attributes
All methods support the attributes listed in the following table. Attributes
enable you to modify the behavior of methods. For example, you can prevent
access to a method from outside the class or enable the method to be invoked
without a class instance.

Attribute values apply to all methods defined within the methods block that
specifies the nondefault values.

methods (attribute1=value1,attribute2=value2,...)
...

end

Attribute
Name Class Description

Abstract logical
Default=false

If true, the method has no implementation. The method
has a syntax line that can include arguments, which
subclasses use when implementing the method:

• Subclasses are not required to define the same number
of input and output arguments. However, subclasses
generally use the same signature when implementing
their version of the method.

• The method can have comments after the function line.

• The method does not contain function or end keywords,
only the function syntax (e.g., [a,b] = myMethod(x,y))

Access • enumeration,
default =
public

• meta.class
object

• cell array of
meta.class
objects

Determines what code can call this method:

• public — Unrestricted access

• protected— Access from methods in class or subclasses

• private — Access by class methods only (not from
subclasses)

• List classes that have access to this method. Specify
classes as meta.class objects in the form:

7-5

7 Methods — Defining Class Operations

(Continued)

Attribute
Name Class Description

- A single meta.class object

- A cell array of meta.class objects. An empty cell
array, {}, is the same as private access.

See “Controlling Access to Class Members” on page 10-24

Hidden logical
Default=false

When false, the method name shows in the list of methods
displayed using the methods or methodsview commands.
If set to true, the method name is not included in these
listings.

Sealed logical
Default=false

If true, the method cannot be redefined in a subclass.
Attempting to define a method with the same name in a
subclass causes an error.

Static logical
Default=false

Set to true to define a method that does not depend
on an object of the class and does not require an object
argument. You must use the class name to call the method:
classname.methodname

“Static Methods” on page 7-25 provides more information.

7-6

Ordinary Methods

Ordinary Methods

In this section...

“Defining Methods” on page 7-7

“Determining Which Method Is Invoked” on page 7-9

“Specifying Precedence” on page 7-13

“Controlling Access to Methods” on page 7-13

“Invoking Superclass Methods in Subclass Methods” on page 7-14

“Invoking Built-In Functions” on page 7-15

Defining Methods
You can specify methods:

• Inside of a class definition block

• In a separate file in the class @-folder

Methods Inside classdef Block
This example shows the definition of a method (the compute function in this
example) within the classdef and methods blocks:

classdef ClassName
methods (AttributeName = value,...)

function x = compute(obj,inc)
x = obj.y + inc;

end % compute method
...

end % methods block
...
end % classedf

7-7

7 Methods — Defining Class Operations

Note Nonstatic methods must include an explicit object variable in the
function definition. The MATLAB language does not support an implicit
reference in the method function definition.

Either of the following statements is correct syntax for calling a method where
obj is an object of the class defining the compute method:

obj.compute(inc)
compute(obj,inc)

See also “Dot Notation vs. Function Notation” on page 7-10.

Method attributes apply only to that particular methods block, which is
terminated by the end statement.

Methods in Separate Files
You can define class methods in separate files within the class @-folder. In
this case, create a function in a separate file having the same name as the
function (i.e., functionname.m). If you want to specify attribute values for
that method, you must declare the method signature within a methods block
in the classdef block . For example:

classdef myClass
methods (AttributeName = value,...)

tdata = testdata(obj,arg1,arg2)
...

end % methods
...
end % classdef

Do not use methods blocks in the separate files. Define the method as a
function. Using the example above, the file testdata.m, must contain the
definition of the testdata function. Note that the signatures must match.

function tdata = testdata(myClass_object,argument2,argument3)
...

end

7-8

Ordinary Methods

The following limitations apply to methods defined in separate files:

• If you want to specify attributes for a method defined in a separate file, you
must declare this method in a methods block (specifying attribute values)
within the classdef block.

• The syntax declared in the methods block (if used) must match the
method’s function line.

• The separate file must be in the class @-folder.

• The constructor method must be defined within the classdef block and,
therefore, cannot be in a separate file. (See “Class Constructor Methods” on
page 7-16 for information on this method.)

• Set and get property access methods must be defined within the classdef
block and, therefore, cannot be in separate files. (See “Property Access
Methods” on page 6-14 for information on these methods.)

Determining Which Method Is Invoked
When the MATLAB runtime invokes an ordinary method that has an
argument list, it uses the following criteria to determine which method to call

• The class of the left-most argument whose class is not specified as inferior
to any other argument’s class is chosen as the dominant class and its
method is invoked.

• If this class does not define the named method, then a function with that
name on the MATLAB path is invoked.

• If no such function exists, MATLAB issues an error indicating that the
dominant class does not define the named method.

Dominant Argument
The dominant argument in a method’s argument list determines which
version of the method or function that the MATLAB runtime calls. Dominance
is determined by the relative precedences of the classes of the arguments. In
general, user-defined classes take precedence over built-in MATLAB classes.
Therefore, the left most argument determines which method to call. However,
user-defined classes can specify the relative dominance of specific classes.

7-9

7 Methods — Defining Class Operations

For example, suppose classA defines classB as inferior and suppose both
classes define a method called combine.

Calling the method with an object of classB and classA:

combine(B,A)

actually calls the combine method of classA because A is the dominant
argument.

See “Specifying Precedence” on page 7-13 for information on how to define
class precedence.

Dot Notation vs. Function Notation
MATLAB classes support both function and dot notation syntax for calling
methods. For example, if setColor is a method of the class of object X, then
calling setColor with function notation would be:

X = setColor(X,'red');

The equivalent method call using dot notation is:

X = X.setColor('red')

However, in certain cases, the results for dot notation can differ with respect
to how MATLAB dispatching works:

• If there is an overloaded subsref, it is invoked whenever using dot-notation.
That is, the statement is first tested to see if it is subscripted assignment.

• If there is no overloaded subsref, then setColormust be a method of X. An
ordinary function or a class constructor is never called using this notation.

• Only the argument X (to the left of the dot) is used for dispatching. No other
arguments, even if dominant, are considered. Therefore dot notation can
call only methods of X; methods of other argument are never called.

A Case Where the Result is Different. Here is an example of a case where
dot and function notation can give different results. Suppose you have the
following classes:

7-10

Ordinary Methods

• classA defines a method called methodA that requires an object of classB
as one of its arguments

• classB defines classA as inferior to classB

classdef classB (InferiorClasses = {?classA})
...

end

The methodA method is defined with two input arguments, one of which is an
object of classB:

classdef classA
methods

function methodA(obj,obj_classB)
...

end
end

classB does not define a method with the same name as methodA. Therefore,
the following syntax causes the MATLAB runtime to search the path for a
function with the same name as methodA because the second argument is an
object of a dominant class. If a function with that name exists on the path,
then MATLAB attempts to call this function instead of the method of classA
and most likely returns a syntax error.

obj = classA(...);
methodA(obj,obj_classB)

Dot notation is stricter in its behavior. For example, this call to methodA:

obj = classA(...);
obj.methodA(obj_classB)

can call only methodA of the class of obj.

Referencing Names with Expressions—Dynamic Reference
You can reference an object’s properties or methods using an expression in
dot-parentheses syntax:

obj.(expression)

7-11

7 Methods — Defining Class Operations

The expression must evaluate to a string that is the name of a property or a
method. For example, the following statements are equivalent:

obj.Property1
obj.('Property1')

In this case, obj is an object of a class that defines a property called
Property1. Therefore, you can pass a string variable in the parentheses to
reference to property:

propName = 'Property1';
obj.(propName)

You can call a method and pass input arguments to the method using another
set of parentheses:

obj.(expression)(arg1,arg2,...)

Using this notation, you can make dynamic references to properties and
methods in the same way you can create dynamic references to the fields
of structs (see “Generate Field Names from Variables” for information on
MATLAB structures).

As an example, suppose an object has methods corresponding to each day
of the week and these methods have the same names as the days of the
week (Monday, Tuesday, and so on). Also, the methods take as string input
arguments, the current day of the month (i.e., the date). Now suppose you
write a function in which you want to call the correct method for the current
day. You can do this using an expression created with the date and datestr
functions:

obj.(datestr(date,'dddd'))(datestr(date,'dd'))

The expression datestr(date,'dddd') returns the current day as a string.
For example:

datestr(date,'dddd')

ans =

Tuesday

7-12

Ordinary Methods

The expression datestr(date,'dd') returns the current date as a string.
For example:

datestr(date,'dd')

ans =

11

Therefore, the expression using dot-parentheses (called on Tuesday the 11th)
is the equivalent of:

obj.Tuesday('11')

Specifying Precedence
“Class Precedence” on page 4-18 provides information on how you can specify
the relative precedence of user-define classes.

Controlling Access to Methods
There might be situations where you want to create methods for internal
computation within the class, but do not want to publish these methods as
part of the public interface to the class. In these cases, you can use the Access
attribute to set the access to one of the following options:

• public— Any code having access to an object of the class can access this
method (the default).

• private — Restricts method access to the defining class, excluding
subclasses. Subclasses do not inherit private methods.

• protected— Restricts method access to the defining class and subclasses
derived from the defining class. Subclasses inherit this method.

Local and nested functions inside the method files have the same access as the
method. Note that local functions inside a class-definition file have private
access to the class defined in the same file.

7-13

7 Methods — Defining Class Operations

Invoking Superclass Methods in Subclass Methods
A subclass can override the implementation of a method defined in a
superclass. In some cases, the subclass method might need to execute some
additional code instead of completely replacing the superclass method. To do
this, MATLAB classes can use a special syntax for invocation of superclass
methods from a subclass implementation for the same-named method.

The syntax to call a superclass method in a subclass class uses the @ symbol:

MethodName@SuperclassName

For example, the following disp method is defined for a Stock class that is
derived from an Asset class. The method first calls the Asset class disp
method, passing the Stock object so that the Asset components of the Stock
object can be displayed. After the Asset disp method returns, the Stock disp
method displays the two Stock properties:

classdef Stock < Asset

methods

function disp(s)

disp@Asset(s) % Call base class disp method first

fprintf(1,'Number of shares: %g\nShare price: %3.2f\n',...

s.NumShares,s.SharePrice);

end % disp

end

end

See “The DocStock disp Method” on page 17-10 for more information on this
example.

Limitations of Use
The following restrictions apply to calling superclass methods. You can use
this notation only within:

• A method having the same name as the superclass method you are invoking

• A class that is a subclass of the superclass whose method you are invoking

7-14

Ordinary Methods

Invoking Built-In Functions
The MATLAB builtin function enables you to call the built-in version of a
function that has been overloaded by a method. See “subsref and subsasgn
Within Class Methods — Built-In Called” on page 15-16 for an example.

7-15

7 Methods — Defining Class Operations

Class Constructor Methods

In this section...

“Rules for Constructors” on page 7-16

“Related Information” on page 7-17

“Examples of Class Constructors” on page 7-17

“Initializing the Object Within a Constructor” on page 7-18

“Constructing Subclasses” on page 7-20

“Errors During Class Construction” on page 7-22

“Basic Structure of Constructor Methods” on page 7-23

Rules for Constructors
A constructor method is a special function that creates an instance of the
class. Typically, constructor methods accept input arguments to assign the
data stored in properties and always return an initialized object.

• The constructor has the same name as the class.

• The only output argument from a constructor is the object constructed.

• The constructor can return only a single argument.

• Constructors must always return a valid instance of the class. Never
return an empty object from a class constructor.

• If the class being created is a subclass, MATLAB calls the constructor of
each superclass class to initialize the object. Implicit calls to the superclass
constructor are made with no arguments. If superclass constructors require
arguments, you must call them from the subclass constructor explicitly.

• If your constructor makes an explicit call to a superclass constructor, this
call must occur before any other reference to the constructed object.

• A class does not need to define a constructor method unless it is a subclass
of a superclass whose constructor requires arguments. In this case, you
must explicitly call the superclass constructor with the required arguments.
See “Constructing Subclasses” on page 7-20

7-16

Class Constructor Methods

• If a class does not define a constructor, MATLAB supplies a constructor
that takes no arguments and returns a scalar object whose properties are
initialized to empty or the values specified as defaults in the property
definitions. The constructor supplied by MATLAB also calls all superclass
constructors with no arguments.

• If you create a class constructor, you should implement class constructors
so that they can be called with no input arguments, in addition to whatever
arguments are normally required See “Supporting the No Input Argument
Case” on page 7-19 and “Basic Structure of Constructor Methods” on page
7-23.

• Constructor functions must return an instance of the constructor’s class.
The constructor should avoid assigning to the constructor output argument
because subclasses often call a superclass constructor in the process of
creating an instance of the subclass.

• Calls to superclass constructors cannot be conditional. This means
superclass construction calls cannot be placed in loops, conditions,
switches, try/catch, or nested functions. See “Make No Conditional Calls to
Superclass Constructors” on page 7-20 for more information.

• Restrict access to constructors using method attributes, as with any
method.

Related Information
See “Creating Object Arrays” on page 8-2 for information on constructing
arrays of objects.

See “Constructor Calling Sequence” on page 12-11 for information specific to
constructing enumerations.

Examples of Class Constructors
The following links provide access to examples of class constructors:

• “Implementing the BankAccount Class” on page 2-13

• “The Filewriter Class” on page 2-18

• “Simplifying the Interface with a Constructor” on page 2-26

• “Specializing the dlnode Class” on page 2-40

7-17

7 Methods — Defining Class Operations

• “A Class to Manage uint8 Data” on page 10-52

• “Initializing Superclasses from Subclasses” on page 10-7

• “Constructor Arguments and Object Initialization” on page 10-10

Initializing the Object Within a Constructor
Constructor functions must return an initialized object as the only output
argument. The output argument is created when the constructor executes,
before executing the first line of code.

For example, the following constructor function can assign the value of the
object’s property A as the first statement because the object obj has already
been assigned to an instance of myClass.

function obj = myClass(a,b,c)
obj.A = a;

...
end

You can call other class methods from the constructor because the object
is already initialized.

The constructor also creates an object whose properties have their default
values—either empty ([]) or the default value specified in the property
definition block. See “Property Definition Block” on page 6-5 for a description
of this syntax and see “Defining Default Values” on page 3-11 for a discussion
of how best to define property values.

For example, the following code calls the class method CalculateValue to
assign the value of the property Value.

function obj = myClass(a,b,c)
obj.Value = obj.CalculateValue(a,b);

...
end

Referencing the Object in a Constructor
When initializing the object, for example, by assigning values to properties,
you must use the name of the output argument to refer to the object within

7-18

Class Constructor Methods

the constructor. For example, in the following code the output argument is
obj and the object is reference as obj:

% obj is the object being constructed
function obj = myClass(arg)

obj.propert1 = arg*10;
obj.method1;

...
end

Supporting the No Input Argument Case
There are cases where the constructor must be able to be called with no
input argument:

• When loading objects into the workspace. If the class ConstructOnLoad
attribute is set to true, the load function calls the class constructor with
no arguments.

• When creating or expanding an object array such that not all elements are
given specific values, the class constructor is called with no arguments to
fill in unspecified elements, (for example, x(10,1) = myclass(a,b,c);).
In this case, the constructor is called once with no arguments to populate
the empty array elements with copies of this one object. See “Creating
Empty Arrays” on page 8-5 for more information.

If there are no input arguments, the constructor creates an object using only
default properties values. A good practice is to always add a check for zero
arguments to the class constructor to prevent an error if either of the two
cases above occur:

function obj = myClass(a,b,c)
if nargin > 0

obj.A = a;
obj.B = b;
obj.C = c;
...

end
end

7-19

7 Methods — Defining Class Operations

See “Basic Structure of Constructor Methods” on page 7-23 for ways to handle
superclass constructors.

Constructing Subclasses
Subclass constructor functions must explicitly call superclass constructors
if the superclass constructors require input arguments. The subclass
constructor must specify these arguments in the call to the superclass
constructor using the constructor output argument and the returned object
must be assigned to the constructor output argument. Here is the syntax:

classdef MyClass < SuperClass
function obj = MyClass(arg)

obj = obj@SuperClass(ArgumentList);
...

end
end

The class constructor must make all calls to superclass constructors before
any other references to the object, such as assigning property values or calling
ordinary class methods. Also, a subclass constructor can call a superclass
constructor only once.

Reference Only Specified Superclasses
The constructor cannot call a superclass constructor with this syntax if the
classdef does not specify the class as a superclass.

classdef MyClass < SuperClass

MATLAB calls any uncalled constructors in the left-to-right order in which
they are specified in the classdef line. MATLAB passes no arguments
these functions.

Make No Conditional Calls to Superclass Constructors
Calls to superclass constructors must be unconditional and you can have only
one call for any given superclass. You must initialize the superclass portion of
the object by calling the superclass constructors before you can use the object
(for example., to assign property values or call class methods).

7-20

Class Constructor Methods

In cases where you need to call superclass constructors with different
arguments depending on some condition, you can conditionally build a cell
array of arguments and provide one call to the constructor.

For example, in the following example the superclass shape constructor is
called using some default values when the cube constructor has been called
with no arguments:

classdef cube < shape

properties

SideLength = 0;

Color = [0 0 0];

end

methods

function cube_obj = cube(length,color,upvector,viewangle)

if nargin == 0 % Provide default values if called with no arguments

super_args{1} = [0 0 1];

super_args{2} = 10;

else

super_args{1} = upvector;

super_args{2} = viewangle;

end

cube_obj = cube_obj@shape(super_args{:});

if nargin > 0 % Use value if provided

cube_obj.SideLength = length;

cube_obj.Color = color;

end

...

end

...

end

Zero or More Superclass Arguments
If you are calling the superclass constructor from the subclass constructor and
you need to support the case where you call the superclass constructor with
no arguments, you must explicitly provide for this syntax.

7-21

7 Methods — Defining Class Operations

Suppose in the case of the cube class example above, all property values in
the shape superclass and the cube subclass have initial values specified in
the class definitions that create a default cube. Then you could create an
instance of cube without specifying any arguments for the superclass or
subclass constructors. Here is how you can implement this behavior in the
cube constructor:

function obj = cube(length,color,upvector,viewangle)

if nargin == 0

% Create empty cell array if no input argsuments

super_args = {};

else

% Use specified argsuments

super_args{1} = upvector;

super_args{2} = viewangle;

end

% Call the superclass constructor with the

% empty cell array (no arguments) if nargin == 0

% otherwise cell array is not empty

cube_obj = cube_obj@shape(super_args{:});

if nargin > 0

cube_obj.SideLength = length;

cube_obj.Color = color;

end

...

end

More on Subclasses
See “Creating Subclasses — Syntax and Techniques” on page 10-7 for
information on creating subclasses.

Errors During Class Construction
If an error occurs during the construction of a handle class, the MATLAB
class system calls the class destructor on the object along with the destructors
for any objects contained in properties and any initialized base classes.

7-22

Class Constructor Methods

See “Handle Class Destructor” on page 5-16 for information on how objects
are destroyed.

Basic Structure of Constructor Methods
It is important to consider the state of the object under construction when
writing your constructor method. Constructor methods can be structured into
three basic sections:

• Pre-initialization — Compute arguments for superclass constructors.

• Object initialization — Call superclass constructors.

• Post initialization — Perform any operations related to the subclass,
including referencing and assigning to the object, call class methods,
passing the object to functions, and so on.

This code illustrates the basic operations performed in each section:

classdef myClass < baseClass1

properties

ComputedValue

end

methods

function obj = myClass(a,b,c)

%%% Pre Initialization %%%

% Any code not using output argument (obj)

if nargin == 0

% Provide values for superclass constructor

% and initialize other inputs

a = someDefaultValue;

args{1} = someDefaultValue;

args{2} = someDefaultValue;

else

% When nargin ~= 0, assign to cell array,

% which is passed to supclass constructor

args{1} = b;

args{2} = c;

end

compvalue = myClass.staticMethod(a);

7-23

7 Methods — Defining Class Operations

%%% Object Initialization %%%

% Call superclass constructor before accessing object

% You cannot conditionalize this statement

obj = obj@baseClass1(args{:});

%%% Post Initialization %%%

% Any code, including access to object

obj.classMethod(...);

obj.ComputedValue = compvalue;

...

end

...

end

...

end

See “Creating Object Arrays” on page 8-2 for information on creating object
arrays in the constructor.

7-24

Static Methods

Static Methods

In this section...

“Why Define Static Methods” on page 7-25

“Calling Static Methods” on page 7-26

Why Define Static Methods
Static methods are associated with a class, but not with specific instances of
that class. These methods do not perform operations on individual objects of
a class and, therefore, do not require an instance of the class as an input
argument, like ordinary methods.

Static methods are useful when you do not want to first create an instance
of the class before executing some code. For example, you might want to
set up the MATLAB environment or use the static method to calculate data
needed to create class instances.

Suppose a class needs a value for pi calculated to particular tolerances. The
class could define its own version of the built-in pi function for use within
the class. This approach maintains the encapsulation of the class’s internal
workings, but does not require an instance of the class to return a value.

Defining a Static Method
To define a method as static, set the methods block Static attribute to true.
For example:

classdef MyClass
...
methods(Static)

function p = pi(tol)
[n d] = rat(pi,tol);
p = n/d;

end
end

end

7-25

7 Methods — Defining Class Operations

“Update Graphs Using Events and Listeners” on page 9-34 provides an
example that uses a static method to create a set of objects representing
graphs.

Calling Static Methods
Invoke static methods using the name of the class followed by dot (.), then the
name of the method:

classname.staticMethodName(args,...)

Calling the pi method of MyClass in the previous section would require this
statement:

value = MyClass.pi(.001);

You can also invoke static methods using an instance of the class, like any
method:

obj = MyClass;
value = obj.pi(.001);

createViews static method provides an example of a static method.

Inheriting Static Methods
Subclasses can redefine static methods unless the method’s Sealed attribute
is also set to true in the superclass.

7-26

Overloading Functions for Your Class

Overloading Functions for Your Class

In this section...

“Overloading MATLAB Functions” on page 7-27

“Rules for Naming to Avoid Conflicts” on page 7-28

Overloading MATLAB Functions
Class methods can provide implementations of MATLAB functions that
operate only on instances of the class. This is possible because MATLAB
software can always identify which class an object belongs to. The dominant
argument is used to determine which version of a function to call. If the
argument is an object, then MATLAB calls the method defined by the object’s
class, if there is one.

In cases where a class defines a function with the same name as a global
function, the class’s implementation of the function is said to overload the
original global implementation.

Note MATLAB does not support overloading functions using different
signatures for the same function name.

Using MATLAB Functions in Conversion Methods
You might want to overload a number of MATLAB functions to work with an
object of your class. Often, a simple solution to providing a full set of MATLAB
functionality for a class involves creating methods that convert the data
contained in your object to a type that existing MATLAB functions can use.

For example, suppose you define a class to represent polynomials that can
have only single precision coefficients. You want a roots method to work
on objects of your new class, but want to use the existing MATLAB roots
function, which accepts a row vector of doubles that are the coefficients of a
polynomial, ordered in descending powers.

7-27

7 Methods — Defining Class Operations

The following method accesses a class property, coefficients, that contains
the polynomial’s coefficients, converts them to type double, and then passes
the vector of doubles to the built–in version of the roots function.

methods
function rts = roots(polyobject)

% Extract data for MATLAB version of roots function
coef = double(polyobject.coefficients);
rts = roots(coef);

end
end

“Overloading MATLAB Functions for the DocPolynom Class” on page 16-16
provides examples.

“Methods That Modify Default Behavior” on page 15-2 provides a discussion
of methods that you might typically implement for MATLAB classes.

Implementing MATLAB Operators
Classes designed to implement new MATLAB data types typically overload
certain operators, such as addition, indexed assignment, and so on.

For example, the addition + (plus) function cannot add two polynomials
because this operation is not defined by simple addition. However, a
polynomial class can define its own plus method that the MATLAB language
calls to perform addition of polynomial objects when you use the + symbol:

p1 + p2

“Implementing Operators for Your Class” on page 15-35 provides information
on methods to overload.

“Defining Arithmetic Operators for DocPolynom” on page 16-14 provides
examples.

Rules for Naming to Avoid Conflicts
The names of methods, properties, and events are scoped to the class.
Therefore, you should adhere to the following rules to avoid naming conflicts:

7-28

Overloading Functions for Your Class

• You can reuse names that you have used in unrelated classes.

• You can reuse names in subclasses if the member does not have public or
protected access. These names then refer to entirely different methods,
properties, and events without affecting the superclass definitions

• Within a class, all names exist in the same name space and must be unique.
A class cannot define two methods with the same name and a class cannot
define a local function with the same name as a method.

• The name of a static method is considered without its class prefix. Thus,
a static method name without its class prefix cannot match the name of
any other method.

7-29

7 Methods — Defining Class Operations

Object Precedence in Expressions Using Operators
Establishing an object precedence enables the MATLAB runtime to determine
which of possibly many versions of an operator or function to call in a given
situation.

For example, consider the expression

objectA + objectB

Ordinarily, objects have equal precedence and the method associated with the
left-most object is called. However, there are two exceptions:

• User-defined classes have precedence over MATLAB built-in classes.

• User-defined classes can specify their relative precedence with respect to
other user-defined classes using the InferiorClasses attribute.

In “A Polynomial Class” on page 16-2, the polynom class defines a plus
method that enables the addition of DocPolynom objects. Given the object p:

p = DocPolynom([1 0 -2 -5])
p =

x^3-2*x-5

the expression:

1 + p
ans =

x^3-2*x-4

calls the DocPolynom plus method (which converts the double, 1, to a
DocPolynom object and then implements the addition of two polynomials). The
user-defined DocPolynom class has precedence over the built–in double class.

Specifying Precedence of User-Defined Classes
You can specify the relative precedence of user-defined classes by listing
inferior classes using a class attribute. The InferiorClasses property
places a class below other classes in the precedence hierarchy. Define the
InferiorClasses property in the classdef statement:

7-30

Object Precedence in Expressions Using Operators

classdef (InferiorClasses = {?class1,?class2}) myClass

This attribute establishes a relative priority of the class being defined with
the order of the classes listed.

Location in the Hierarchy
If objectA is above objectB in the precedence hierarchy, then the expression

objectA + objectB

calls @classA/plus.m. Conversely, if objectB is above objectA in the
precedence hierarchy, then the MATLAB runtime calls @classB/plus.m.

See “Rules for Naming to Avoid Conflicts” on page 7-28 for related information.

7-31

7 Methods — Defining Class Operations

Class Methods for Graphics Callbacks

In this section...

“Callback Arguments” on page 7-32

“General Syntax for Callbacks” on page 7-32

“Object Scope and Anonymous Functions” on page 7-33

“Example — Class Method as a Slider Callback” on page 7-34

Callback Arguments
You can use class methods as callbacks for Handle Graphics objects by
specifying the callback as an anonymous function. Anonymous functions
enable you to pass the arguments required by methods (i.e., the first argument
is a class object) and graphics object callbacks (i.e., the event source and the
event data), as well as any other arguments you want to pass to the function.

The following links provide general information on graphics object callbacks
and anonymous functions.

Background Information

• Function Handle Callbacks — Information on graphics object callbacks

• Anonymous Functions — Information about using anonymous functions

General Syntax for Callbacks
The basic syntax for a function handle that you assign to the graphic object’s
Callback property includes the object as the first argument:

@(src,event)method_name(object,src,event,additional_arg,...)

You must define the callback method with the following signature:

method_name(object,src,event)

7-32

Class Methods for Graphics Callbacks

Object Scope and Anonymous Functions
Anonymous functions take a snapshot of the argument values when you
define the function handle. You must, therefore, consider this scoping
when assigning the Callback property. The following two sections provide
examples.

Using Value Classes
Consider the following snippet of a value class definition:

classdef SeaLevelAdjuster

properties

Slider

end

methods

function seal = SeaLevelAdjuster

...

seal.Slider = uicontrol('Style','slider');

set(seal.Slider,'Callback',@(src,event)slider_cb(seal,src,event))

end

end

end

This class assigns the Callback property in a separate set statement so that
the value object’s (seal) Slider property has been defined when you create
the function handle. Otherwise, Handle Graphics freezes seal before the
uicontrol’s handle is assigned to the Slider property.

Using Handle Classes
The difference in behavior between a handle object and a value object is
important in this case. If you defined the class as a handle class, the object is
a reference to the underlying data. Therefore, when the MATLAB runtime
resolves the function handle, the contents of the object reflects assignments
made after the function handle is defined:

classdef SeaLevelAdjuster < handle
...
properties

Slider
end

7-33

7 Methods — Defining Class Operations

methods
function seal = SeaLevelAdjuster

...
seal.Slider = uicontrol('Style','slider',...
'Callback',@(src,event)slider_cb(seal,src,event));

end
end

end

Example — Class Method as a Slider Callback
This example defines a slider that varies the color limits of an indexed image
to give the illusion of varying the sea level.

Displaying the Class Files
Open the SeaLevelAdjuster class definition file in the MATLAB editor.

To use the class, create a folder named @SeaLevelAdjuster and save
SeaLevelAdjuster.m to this folder. The parent folder of @SeaLevelAdjuster
must be on the MATLAB path.

Class Properties
The class defines properties to store graphics object handles and the
calculated color limits:

classdef SeaLevelAdjuster < handle
properties

Figure = [];
Axes = [];
Image = [];
CLimit = [];
Slider = [];

end
end

7-34

Class Methods for Graphics Callbacks

Class Constructor
The class constructor creates the graphics objects and assigns the slider
callback (last line in code snippet):

methods

function seal = SeaLevelAdjuster(x,map)

seal.Figure = figure('Colormap',map,...

'Resize','off',...

'Position',[100 100 560 580]);

seal.Axes = axes('DataAspectRatio',[1 1 1],...

'XLimMode','manual',...

'YLimMode','manual',...

'DrawMode','fast',...

'Parent',seal.Figure);

seal.Image = image(x,'CDataMapping','scaled','Parent',seal.Axes);

seal.CLimit = get(seal.Axes,'CLim');

seal.Slider = uicontrol('Style','slider',...

'Parent',seal.Figure,...

'Max',seal.CLimit(2),...

'Min',seal.CLimit(1)-1,...

'Value',seal.CLimit(1),...

'Units','normalized',...

'Position',[.9286 .1724 .0357 .6897],...

'SliderStep',[.005 .002],...

'Callback',@(src,event)slider_cb(seal));

end % SeaLevelAdjuster

end % methods

The callback function for the slider is defined to accept the three required
arguments — a class instance, the handle of the event source, and the event
data:

methods

function slider_cb(seal)

min_val = get(seal.Slider,'Value');

max_val = max(max(get(seal.Image,'CData')));

set(seal.Axes,'CLim',[min_val max_val])

drawnow

end % slider_cb

end % methods

7-35

7 Methods — Defining Class Operations

Using the SeaLevelAdjuster Class
The class is designed to be used with the cape image that is included with the
MATLAB product. To obtain the image data, use the load command:

load cape

After loading the data, create a SeaLevelAdjuster object for the image:

seal = SeaLevelAdjuster(X,map)

Move the slider to change the apparent sea level and visualize what would
happen to Cape Cod if the sea level were to rise.

7-36

Class Methods for Graphics Callbacks

50 100 150 200 250 300 350

50

100

150

200

250

300

350

7-37

7 Methods — Defining Class Operations

7-38

8

Object Arrays

• “Creating Object Arrays” on page 8-2

• “Concatenating Objects of Different Classes” on page 8-13

8 Object Arrays

Creating Object Arrays

In this section...

“Basic Knowledge” on page 8-2

“Building Arrays in the Constructor” on page 8-2

“Initializing Arrays of Value Objects” on page 8-3

“Initial Value of Object Properties” on page 8-5

“Creating Empty Arrays” on page 8-5

“Initializing Arrays of Handle Objects” on page 8-7

“Referencing Property Values in Object Arrays” on page 8-9

“Object Arrays with Dynamic Properties” on page 8-10

Basic Knowledge
The material presented in this section builds on an understanding of the
information presented in the following sections.

Class Definitions

• “Class Syntax Fundamentals”

• “Class Constructor Methods” on page 7-16

Working with Arrays

• “Matrix Indexing”

• “Empty Matrices, Scalars, and Vectors”

• “Multidimensional Arrays”

Building Arrays in the Constructor
A constructor method can create an object array by building the array
and returning it as the output argument. For example, the following
DocArrayExample class creates an object array the same size as the input
array and initializes the Value property of each object to the corresponding
input array value.

8-2

Creating Object Arrays

classdef DocArrayExample
properties

Value
end
methods

function obj = DocArrayExample(F)
if nargin ~= 0 % Allow nargin == 0 syntax

m = size(F,1);
n = size(F,2);
obj(m,n) = DocArrayExample; % Preallocate object array
for i = 1:m

for j = 1:n
obj(i,j).Value = F(i,j);

end
end

end
end

end
end

To preallocate the object array, assign the last element of the array
first. MATLAB fills the first to penultimate array elements with default
DocArrayExample objects.

After preallocating the array, assign each object Value property to the
corresponding value in the input array F. For example:

F = magic(5); % Create 5-by-5 array of magic square numbers
A = DocArrayExample(F); % Create 5-by-5 array of objects

Initializing Arrays of Value Objects
During the creation of object arrays, MATLAB might need to call the class
constructor with no arguments, even if the constructor does not build an
object array. For example, suppose you define the following class:

classdef SimpleClass
properties

Value
end
methods

8-3

8 Object Arrays

function obj = SimpleClass(v)
obj.Value = v;

end
end

end

Now execute the following statement (which is a valid MATLAB statement):

a(1,7) = SimpleClass(7)
Error using SimpleClass>SimpleClass.SimpleClass
Not enough input arguments.

This error occurs because MATLAB calls the constructor with no arguments
to initialize elements 1 through 6 in the array (that is, a(1,1:6)).

Therefore, you must ensure the constructor supports the no input argument
syntax. A simple solution is to test nargin and let the case when nargin
== 0 execute no code, but not error:

classdef SimpleClass
properties

Value
end
methods

function obj = SimpleClass(v)
if nargin > 0

obj.Value = v;
end

end
end

end

Using the revised class definition, the previous array assignment statement
executes without error:

a(1,7) = SimpleClass(7)
a =

1x7 SimpleClass
Properties:

Value

8-4

Creating Object Arrays

The object assigned to array element a(1,7) uses the input argument passed
to the constructor as the value assigned to the property:

a(1,7)
ans =

SimpleClass
Properties:

Value: 7

However, MATLAB created the objects contained in elements a(1,1:6) with
no input argument and initialized the value of the Value property to empty
[]. For example:

a(1,1)
ans =

SimpleClass
Properties:

Value: []

MATLAB calls the SimpleClass constructor once and copies the returned
object to each element of the array.

Initial Value of Object Properties
When MATLAB calls a constructor with no arguments to initialize an object
array, one of the following assignments occurs:

• If property definitions specify default values, MATLAB assigns these
values.

• If the constructor assigns values in the absence of input arguments,
MATLAB assigns these values.

• If neither of the above situations apply, MATLAB assigns the value of
empty double (i.e., []) to the property.

Creating Empty Arrays
Empty arrays have no elements, but are of a certain class. All nonabstract
classes have a static method named empty that creates an empty array of the
same class. The empty method enables you to specify the dimensions of the
output array. However, at least one of the dimensions must be 0. For example:

8-5

8 Object Arrays

ary = SimpleClass.empty(5,0);

creates a 5–by–0 empty array of class SimpleClass.

Calling empty with no arguments returns a 0–by–0 empty array.

Assigning Values to an Empty Array
An empty object defines the class of an array. However, to assign nonempty
objects to an empty array, MATLAB must call the class constructor to create
default instances of the class for every other array element. Once you assign a
nonempty object to an array, all array elements must be nonempty objects.

Note A class constructor should never return empty objects by default.

For example, using the SimpleClass defined in the “Initializing Arrays of
Value Objects” on page 8-3 section, create an empty array:

ary = SimpleClass.empty(5,0);
class(ary)

ans =

SimpleClass

The array ary is an array of class SimpleClass. However, it is an empty array:

ary(1)
Index exceeds matrix dimensions.

If you make an assignment to a property value, MATLAB calls the
SimpleClass constructor to grow the array to the require size:

ary(5).Value = 7;
ary(5).Value

ans =

7

8-6

Creating Object Arrays

ary(1).Value

ans =

[]

In this case, MATLAB populates array elements one through five with
SimpleClass objects created by calling the class constructor with no
arguments. Then MATLAB assigns the property value 7 to the object at
ary(5).

Initializing Arrays of Handle Objects
When MATLAB expands an array, it calls the class constructor once, and then
creates unique handles for each element in the array. MATLAB copies the
property values from the constructed object without calling the constructor
for each additional element.

The following class illustrates this behavior.

classdef InitArray < handle
properties

RandNumb
end
methods

function obj = InitArray
obj.RandNumb = randi(100);

end
end

end

The property RandNumb contains a random number that is assigned from the
InitArray class constructor. The next section uses the InitArray class to
show when MATLAB calls the class constructor when expanding an array.

Initializing a Handle Object Array
Consider what happens when MATLAB initialize an array by first assigning
to the last element in the array. (The last element is the one with the highest

8-7

8 Object Arrays

index values). For example, suppose the value of the RandNumb property of the
InitArray object assigned to the element A(4,5) is 59:

A(4,5) = InitArray;
A(4,5).RandNumb

ans =

59

The element in the index location A(4,5) is an instance of the InitArray
class. Element A(1,1) is also an instance of the InitArray class, but its
RandNumb property is set to a different random number. The difference is
caused by the fact that MATLAB called the class constructor to create a single
object, which MATLAB then copied to all the remaining array elements.
Calling the constructor resulted in another call to the randi function, which
returns a new random number:

A(1,1).RandNumb

ans =

91

MATLAB copies this second instance to all remaining array elements:

A(2,2).RandNumb

ans =

91

A(2,3).RandNumb

ans =

91

When initializing an object array, MATLAB assigns a copy of a single object
to the empty elements in the array. However, MATLAB gives each object a

8-8

Creating Object Arrays

unique handle so that later you can assign different property values to each
object. This means that the objects are not equivalent:

A(1,1) == A(2,2)
ans =

0

Therefore, the creation of an array with a statement such as:

A(4,5) = InitArray;

results in two calls to the class constructor. The first creates the object for
array element A(4,5). The second creates a default object (no arguments
passed to the constructor) that MATLAB copies to all remaining empty array
elements.

See “Indexing Multidimensional Arrays” and “Reshaping Multidimensional
Arrays” for information on array manipulation.

See “Initializing Properties to Unique Values” on page 3-12 for information on
assigning values to properties.

See “Indexed Reference and Assignment” on page 15-13 for information on
implementing subsasgn methods for your class.

Referencing Property Values in Object Arrays
You can reference all values of the same property in an object array using
the syntax:

objarray.PropName

For example, given the ObjArray class:

classdef ObjArray
properties

RegProp
end
methods

function obj = ObjArray

8-9

8 Object Arrays

% Assign property a random integer
obj.RegProp = randi(100);

end
end

end

Create an array of ObjArray objects and assign all values of the RegProp
property to the propvalues cell array:

for k = 1:5
a(k) = ObjArray;

end
propvalues = {a.RegProp}

propvalues =

[96] [49] [81] [15] [43]

Object Arrays with Dynamic Properties
See “Dynamic Properties — Adding Properties to an Instance” on page 6-26
for information about classes that can define dynamic properties.

You cannot reference all the dynamic properties in an object array using a
single statement, as shown in the previous section for ordinary properties.
For example, suppose the ObjArray class subclasses the dynamicprops class,
which enables you to add properties to instances of the ObjArray class.

classdef ObjArray < dynamicprops
properties

RegProp
end
methods

function obj = ObjArray
% Assign property a random integer
obj.RegProp = randi(100);

end
end

end

8-10

Creating Object Arrays

Create an object array and add dynamic properties to each member of the
array:

% Define elements 1 and 2 as ObjArray objects
a(1) = ObjArray;
a(2) = ObjArray;
% Add dynamic properties to each object and assign a value
a(1).addprop('DynoProp');
a(1).DynoProp = 1;
a(2).addprop('DynoProp');
a(2).DynoProp = 2;

You can get the values of the ordinary properties, as with any array:

a.RegProp

ans =

4

ans =

85

MATLAB returns an error if you try to access the dynamic properties of all
array elements using this syntax.

a.DynoProp
No appropriate method, property, or field DynoProp
for class ObjArray.

You must refer to each object individually to access dynamic property values:

a(1).DynoProp

ans =

1
a(2).DynoProp

ans =

8-11

8 Object Arrays

2

8-12

Concatenating Objects of Different Classes

Concatenating Objects of Different Classes

In this section...

“Basic Knowledge” on page 8-13

“MATLAB Concatenation Rules” on page 8-13

“Concatenating Objects” on page 8-14

“Converting to the Dominant Class” on page 8-14

“Implementing Converter Methods” on page 8-17

Basic Knowledge
The material presented in this section builds on an understanding of the
information presented in the following sections.

• “Class Precedence” on page 4-18

• “Class Attributes” on page 4-6

• “Creating Object Arrays” on page 8-2

MATLAB Concatenation Rules
MATLAB follows these rules for concatenating objects:

• MATLAB always converts all objects to the dominant class.

• User-defined classes take precedence over built-in classes like double.

• If there is no defined dominance relationship between any two objects, then
the left-most object dominates (see “Class Precedence” on page 4-18).

• MATLAB does not convert objects to a common superclass unless
those objects derive from a member of a heterogeneous hierarchy. See
matlab.mixin.Heterogeneous for more information.

The following sections describe these rules in more detail. See “Valid
Combinations of Unlike Classes” for related information.

8-13

8 Object Arrays

Concatenating Objects
Concatenation combines objects into arrays:

ary = [obj1,obj2,obj3,...,objn]; % size of ary is 1-by-n
ary = [obj1;obj2;obj3;...;objn]; % size of ary is n-by-1

The class of the resulting array, ary, is the same as the class of the objects
being concatenated. Concatenating unlike objects is possible if MATLAB can
convert objects to the dominant class. MATLAB attempts to convert unlike
objects by:

• Calling the inferior object’s converter method, if one exists (see
“Implementing Converter Methods” on page 8-17 for an example).

• Passing an inferior object to the dominant class constructor to create an
object of the dominant class.

If conversion of the inferior objects is successful, MATLAB returns an array
that is of the dominant class. If conversion is not possible, MATLAB returns
an error.

Modifying Default Concatenation
Classes can control how concatenation of its instances works by overloading
horzcat, vertcat, cat. See “Redefining Concatenation for Your Class” on
page 15-8 for more information.

Converting to the Dominant Class
MATLAB first attempts to find converter methods for objects of the inferior
classes. If your class design requires object conversion, implement methods
for this purpose. See “Converting Objects to Another Class” on page 15-11 for
general information on converter methods.

Calling the Dominant-Class Constructor
When MATLAB calls the dominant class constructor to convert an object of
an inferior class to the dominant class, the inferior object is passed to the
constructor as an argument. If the class design enables the dominant class
constructor to accept objects of inferior classes as input arguments, then
concatenation is possible without implementing a separate converter method.

8-14

Concatenating Objects of Different Classes

In cases where the constructor simply assigns this argument to a property,
the result is an object of the dominant class with an object of an inferior class
stored in a property. If this is not a desired result, then ensure that class
constructors include adequate error checking.

For example, consider the class ColorClass and two subclasses, RGBColor
and HSVColor:

classdef ColorClass
properties

Color
end

end

The class RGBColor inherits the Color property from ColorClass. RGBColor
stores a color value defined as a three-element vector of red, green, and
blue (RGB) values. The constructor does not restrict the value of the input
argument. It assigns this value directly to the Color property.

classdef RGBColor < ColorClass
% Class to contain RGB color specification

methods
function obj = RGBColor(rgb)

if nargin > 0
obj.Color = rgb;

end
end

end
end

The class HSVColor also inherits the Color property from ColorClass.
HSVColor stores a color value defined as a three-element vector of hue,
saturation, brightness value (HSV) values.

classdef HSVColor < ColorClass
% Class to contain HSV color specification

methods
function obj = HSVColor(hsv)

if nargin > 0
obj.Color = hsv;

end

8-15

8 Object Arrays

end
end

end

Create an instance of each class and concatenate them into an array. The
RGBColor object is dominant because it is the left most object and neither
class defines a dominance relationship:

crgb = RGBColor([1 0 0]);
chsv = HSVColor([0 1 1]);
ary = [crgb,chsv];

class(ary)

ans =

RGBColor

MATLAB can combine these different objects into an array because it can pass
the inferior object of class HSVColor to the constructor of the dominant class.
However, notice that the Color property of the second RGBColor object in the
array actually contains an HSVColor object, not an RGB color specification:

ary(2).Color

ans =

HSVColor

Properties:
Color: [0 1 1]

Avoid this undesirable behavior by:

• Implementing converter methods

• Performing argument checking in class constructors before assigning
values to properties

The next section shows updates to these classes.

8-16

Concatenating Objects of Different Classes

Implementing Converter Methods
Here is the ColorClass class with converter methods for RGBColor and
HSVColor objects:

classdef ColorClass
properties

Color
end
methods

function rgbObj = RGBColor(obj)
% Convert HSVColor object to RGBColor object

if strcmp(class(obj),'HSVColor')
rgbObj = RGBColor(hsv2rgb(obj.Color));

end
end
function hsvObj = HSVColor(obj)
% Convert RGBColor object to HSVColor object

if strcmp(class(obj),'RGBColor')
hsvObj = HSVColor(rgb2hsv(obj.Color));

end
end

end
end

Create an array of RGBColor and HSVColor objects with the revised superclass:

crgb = RGBColor([1 0 0]);
chsv = HSVColor([0 1 1]);
ary = [crgb,chsv];
class(ary)

ans =

RGBColor

MATLAB calls the converter method for the HSVColor object, which it inherits
from the superclass. The second array element is now an RGBColor object
with an RGB color specification assigned to the Color property:

ary(2)

8-17

8 Object Arrays

ans =

RGBColor

Properties:
Color: [1 0 0]

ary(2).Color

ans =

1 0 0

If the left-most object is of class HSVColor, the array ary is also of class
HSVColor, and MATLAB converts the Color property data to HSV color
specification.

ary = [chsv crgb]
ary =

1x2 HSVColor

Properties:
Color

ary(2).Color

ans =

0 1 1

Defining a converter method in the superclass and adding better argument
checking in the subclass constructors produces more predicable results. Here
is the RGBColor class constructor with argument checking:

classdef RGBColor < ColorClass2
methods

function obj = RGBColor(rgb)
if nargin == 0

rgb = [0 0 0];
else

if ~(strcmp(class(rgb),'double')...

8-18

Concatenating Objects of Different Classes

&& size(rgb,2) == 3 && max(rgb) <= 1 && min(rgb) >= 0)
error('Specify color as RGB values')

end
end
obj.Color = rgb;

end
end

end

Your applications might require additional error checking and other coding
techniques. The classes in these examples are designed only to demonstrate
concepts.

See “Class Constructor Methods” on page 7-16 for more information on
writing class constructors.

See “Class Hierarchies” for more information on inheritance.

8-19

8 Object Arrays

8-20

9

Events — Sending and
Responding to Messages

• “Learning to Use Events and Listeners” on page 9-2

• “Create a Property Set Listener” on page 9-8

• “Events and Listeners — Concepts” on page 9-11

• “Event Attributes” on page 9-16

• “Events and Listeners — Syntax and Techniques” on page 9-18

• “Listen for Changes to Property Values” on page 9-27

• “Update Graphs Using Events and Listeners” on page 9-34

9 Events — Sending and Responding to Messages

Learning to Use Events and Listeners

In this section...

“Why Use Events and Listeners” on page 9-2

“What You Need to Know” on page 9-2

“Customizing Event Data” on page 9-3

“Observe Property Changes” on page 9-6

Why Use Events and Listeners
Events are notices that objects broadcast in response to something that
happens, such as a property value changing or a user interaction with an
application program. Listeners execute functions when notified that the event
of interest occurs. You can use events to communicate things that happen
to objects, and respond to these events by executing the listener’s callback
function.

See “Events and Listeners — Concepts” on page 9-11 for a more thorough
discussion of the MATLAB event model.

What You Need to Know
The following sections provide simple examples that show the basic
techniques for using events and listeners. Subsequent sections provide more
detailed descriptions and more complex examples.

Events and Listeners Basics
When using events and listeners:

• Only handle classes can define events and listeners (See “Naming Events”
on page 9-18 for syntax).

• Call the handle notify method to trigger the event (See “Triggering
Events” on page 9-18, and “Defining and Triggering an Event” on page 9-4,
for examples). The event notification broadcasts the named event to all
listeners registered for this event.

9-2

Learning to Use Events and Listeners

• Use the handle addlistener method to associate a listener with an object
that will be the source of the event (“Listening to Events” on page 9-19,
“Creating a Listener for the Overflow Event” on page 9-5, and “Property
Event and Listener Classes” on page 9-29).

• When adding a listener, pass a function handle for the listener callback
function using a syntax such as the following:

- addlistener(eventObject,'EventName',@functionName) — for an
ordinary function.

- addlistener(eventObject,'EventName',@Obj.methodName) — for a
method of Obj.

- addlistener(eventObject,'EventName',@ClassName.methodName)—
for a static method of the class ClassName.

• Listener callback functions must define at least two input arguments —
the event source object handle and the event data (See “Defining Listener
Callback Functions” on page 9-24 for more information).

• You can modify the data passed to each listener callback by subclassing the
event.EventData class (See “Defining Event-Specific Data” on page 9-21)
and “Defining the Event Data” on page 9-5 for more information).

Customizing Event Data
Suppose you want to create a listener callback function that has access to
specific information when the event occurs. This example shows how to do
this by creating custom event data.

Events provide information to listener callback functions by passing an
event data argument to the specified function. By default, MATLAB passes
an event.EventData object to the listener callback. This object has two
properties:

• EventName— Name of the event triggered by this object.

• Source — Handle of the object triggering the event.

Provide additional information to the listener callback by subclassing the
event.EventData class.

• Define properties in the subclass to contain the additional data.

9-3

9 Events — Sending and Responding to Messages

• Define a constructor that accepts the additional data as arguments.

• Use the subclass constructor as an argument to the notify method to
trigger the event.

The “Defining the Event Data” on page 9-5 section shows an implementation
of this subclass.

See “Defining Event-Specific Data” on page 9-21 for another example that
subclasses event.EventData.

Defining and Triggering an Event
The SimpleEventClass defines a property set method (see “Property Set
Methods” on page 6-16) from which it triggers an event if the property is
set to a value exceeding a certain limit. The property set method performs
these operations:

• Saves the original property value

• Sets the property to the specified value

• If the specified value is greater than 10, the set method triggers an
Overflow event

• Passes the original property value, as well as other event data, in a
SpecialEventDataClass object to the notify method (see “Defining the
Event Data” on page 9-5)

classdef SimpleEventClass < handle
% Must be a subclass of handle

properties
Prop1 = 0;

end
events

Overflow
end
methods

function set.Prop1(obj,value)
orgvalue = obj.Prop1;
obj.Prop1 = value;

if (obj.Prop1 > 10)

9-4

Learning to Use Events and Listeners

% Trigger the event using custom event data
notify(obj,'Overflow',SpecialEventDataClass(orgvalue));

end
end

end
end

Defining the Event Data
Event data is always contained in an event.EventData object. The
SpecialEventDataClass adds the original property value to the event data
by subclassing event.EventData:

classdef SpecialEventDataClass < event.EventData
properties

OrgValue = 0;
end
methods

function eventData = SpecialEventDataClass(value)
eventData.OrgValue = value;

end
end

end

Creating a Listener for the Overflow Event
To listen for the Overflow event, attach a listener to an instance of the
SimpleEventClass class. Use the addlistener method to create the listener.
You also need to define a callback function for the listener to execute when
the event is triggered.

The function setupSEC instantiates the SimpleEventClass class and adds
a listener to the object. In this example, the listener callback function
displays information that is contained in the eventData argument (which is
a SpecialEventDataClass object).

function sec = setupSEC
% Create an object and attach the listener
sec = SimpleEventClass;
addlistener(sec,'Overflow',@overflowHandler)
% Define the listener callback function

9-5

9 Events — Sending and Responding to Messages

function overflowHandler(eventSrc,eventData)
disp('The value of Prop1 is overflowing!')
disp(['It''s value was: ' num2str(eventData.OrgValue)])
disp(['It''s current value is: ' num2str(eventSrc.Prop1)])

end
end

Create the SimpleEventClass object and add the listener:

>> sec = setupSEC;
>> sec.Prop1 = 5;
>> sec.Prop1 = 15; % listener triggers callback
The value of Prop1 is overflowing!
It's value was: 5
It's current value is: 15

Observe Property Changes
This example shows how to listen for changes to a property value. This
examples uses:

• PostSet event predefined by MATLAB

• SetObservable property attribute to enable triggering the property
PostSet event.

• addlistener handle class method to create the listener

classdef PropLis < handle
% Define a property that is SetObservable
properties (SetObservable)

ObservedProp = 1;
end
methods

function attachListener(obj)
%Attach a listener to a PropListener object
addlistener(obj,'ObservedProp','PostSet',@PropLis.propChange);

end
end
methods (Static)

function propChange(metaProp,eventData)
% Callback for PostSet event

9-6

Learning to Use Events and Listeners

% Inputs: meta.property object, event.PropertyEvent
h = eventData.AffectedObject;
propName = metaProp.Name;
disp(['The ',propName,' property has changed.'])
disp(['The new value is: ',num2str(h.ObservedProp)])
disp(['It''s defaul value is: ',num2str(metaProp.DefaultValue)])

end
end

end

The PropLis class uses an ordinary method (attachListener) to add the
listener for the ObservedProp property. If the PropLis classed defined a
constructor, it could contain the call to addlistener.

The listener callback is a static method (propChange) to which
MATLAB passes a meta.property object for ObservedProp, and an
event.PropertyEvent object. These arguments provide information about
the property and the event.

Use the PropLis class by creating an instance and calling its attachListener
method:

plObj = PropLis;
plObj.ObservedProp

ans =

1
plObj.attachListener
plObj.ObservedProp = 2;
The ObservedProp property has changed.
The new value is: 2
It's defaul value is: 1

See “Creating Property Listeners” on page 9-27 for more information on
property listeners.

9-7

9 Events — Sending and Responding to Messages

Create a Property Set Listener
This example shows how to define a listener for a property set event. This
means the listener callback triggers when the value of a specific property
changes. The class defined for this example uses a method for a push button
callback and a static method for the listener callback. When the push button
callback changes the value of a property, the listener executes its callback
on the PreSet event.

This example defines a class (PushButton) with these design elements:

• ResultNumber – Observable property

• uicontrol pushbutton – Push button object used to generate a new graph
when its callback executes

• A listener that responds to a change in the observable property

The PushButton Class Design

The PushButton class creates figure, uicontrol, axes graphics objects and a
listener object in the class constructor.

The push button’s callback is a class method (named pressed). When the
push button is activated, the following sequence occurs:

1 MATLAB executes the pressed method, which graphs a new set of data
and increments the ResultNumber property.

2 Attempting to set the value of the ResultNumber property triggers the
PreSet event, which executes the listener callback before setting the
property value.

3 The listener callback uses the event data to obtain the handle of the
callback object (an instance of the PushButton class), which then provides
the handle of the axes object that is stored in its AxHandle property.

4 The listener callback updates the axes Title property, after the callback
completes execution, MATLAB sets the ResultsNumber property to its
new value.

9-8

Create a Property Set Listener

classdef PushButton < handle
properties (SetObservable)

% Enable listener to observe PreSet event
ResultNumber = 1;

end
properties

AxHandle
end
methods

function buttonObj = PushButton
myFig = figure;
buttonObj.AxHandle = axes('Parent',myFig);
uicontrol('Parent',myFig,...

'Style','pushbutton',...
'String','Plot Data',...
'Callback',@(src,evnt)pressed(buttonObj));

addlistener(buttonObj,'ResultNumber','PreSet',...
@PushButton.updateTitle);

end
end
methods

function pressed(obj)
% Push button callback
% Perform plotting operations
% Specify target axes for output of plot function
scatter(obj.AxHandle,randn(1,20),randn(1,20),'p')
% Update observed property
% which triggers PreSet event
obj.ResultNumber = obj.ResultNumber + 1;

end
end
methods (Static)

function updateTitle(~,eventData)
% Listener callback - updates axes title
h = eventData.AffectedObject;
% Get handle to title text object
% And set String property
set(get(h.AxHandle,'Title'),'String',['Result Number: ',...

num2str(h.ResultNumber)])
end

9-9

9 Events — Sending and Responding to Messages

end
end

The scatter graph looks similar to this after three push-button clicks:

See “Listen for Changes to Property Values” on page 9-27 for more on property
events.

9-10

Events and Listeners — Concepts

Events and Listeners — Concepts

In this section...

“The Event Model” on page 9-11

“Default Event Data” on page 9-13

“Events Only in Handle Classes” on page 9-13

“Property-Set and Query Events” on page 9-14

“Listeners” on page 9-15

The Event Model
Events represent changes or actions that occur within class instances. For
example,

• Modification of class data

• Execution of a method

• Querying or setting a property value

• Destruction of an object

Basically, any activity that you can detect programmatically can generate an
event and communicate information to other objects.

MATLAB classes define a process that communicates the occurrence of events
to other objects that need to respond to the events. The event model works
this way:

• A handle class declares a name used to represent an event. “Naming
Events” on page 9-18

• After creating an instance of the event-declaring class, you can attach
listener objects to it. “Ways to Create Listeners” on page 9-22

• A call to a class method broadcasts a notice of the event to listeners. The
class user determines when to trigger the event. “Triggering Events” on
page 9-18

9-11

9 Events — Sending and Responding to Messages

• Listeners execute a callback function when notified that the event has
occurred. “Defining Listener Callback Functions” on page 9-24

• You can bind listeners to the lifecycle of the object that defines the event,
or limit listeners to the existence and scope of the listener object. “Ways
to Create Listeners” on page 9-22

The following diagram illustrates the event model.

Listener1

Properties
EventName = ‘InsufficientFunds’
FunctionHandle = @Callback1

Listener2

Properties
EventName = ‘InsufficientFunds’
FunctionHandle = @Callback2

2. The notify method
 triggers an event, and a
 message is broadcast.

3. Listeners awaiting message
 execute their callbacks.

 (The broadcasting object
 does not necessarily know
 who is listening.)

1. The withdraw method is called. BankAccount

Properties
AccountNumber
AccountBalance

Methods

Events
InsufficientFunds

InsufficientFunds
InsufficientFunds

if AccountBalance <= 0
 notify(obj,’InsufficientFunds’);
end

deposit
withdraw

9-12

Events and Listeners — Concepts

Default Event Data
Events provide information to listener callbacks by passing an event
data argument to the callback function. By default, MATLAB passes
an event.EventData object to the listener callback. This object has two
properties:

• EventName— The event name as defined in the class event block

• Source — The object that is the source of the event

MATLAB passes the source object to the listener callback in the required
event data argument. This enables you to access any of the object’s public
properties from within your listener callback function.

Customizing Event Data
You can create a subclass of the event.EventData class to provide additional
information to listener callback functions. The subclass would define
properties to contain the additional data and provide a method to construct
the derived event data object so it can be passed to the notify method.

“Defining Event-Specific Data” on page 9-21 provides an example showing
how to customize this data.

Events Only in Handle Classes
You can define events only in handle classes. This restriction exists because a
value class is visible only in a single MATLAB workspace so no callback or
listener can have access to the object that triggered the event. The callback
could have access to a copy of the object. However, accessing a copy is not
generally useful because the callback cannot access the current state of the
object that triggered the event or effect any changes in that object.

“Comparing Handle and Value Classes” on page 5-2 provides general
information on handle classes.

“Events and Listeners — Syntax and Techniques” on page 9-18 shows the
syntax for defining a handle class and events.

9-13

9 Events — Sending and Responding to Messages

Property-Set and Query Events
There are four predefined events related to properties:

• PreSet — Triggered just before the property value is set, before calling
its set access method

• PostSet— Triggered just after the property value is set

• PreGet— Triggered just before a property value query is serviced, before
calling its get access method

• PostGet— Triggered just after returning the property value to the query

These events are predefined and do not need to be listed in the class events
block.

When a property event occurs, the callback is passed an event.PropertyEvent
object. This object has three properties:

• EventName— The name of the event described by this data object

• Source — The source object whose class defines the event described by
the data object

• AffectedObject— The object whose property is the source for this event
(that is, AffectedObject contains the object whose property was either
accessed or modified).

You can define your own property-change event data by subclassing the
event.EventData class. Note that the event.PropertyEvent class is a sealed
subclass of event.EventData.

See “Listen for Changes to Property Values” on page 9-27 for a description of
the process for creating property listeners.

See “The PostSet Event Listener” on page 9-47 for an example.

See “Property Access Methods” on page 6-14 for information on methods that
control access to property values.

9-14

Events and Listeners — Concepts

Listeners
Listeners encapsulate the response to an event. Listener objects belong to the
event.listener class, which is a handle class that defines the following
properties:

• Source— Handle or array of handles of the object that generated the event

• EventName — Name of the event

• Callback — Function to execute with an enabled listener receives event
notification

• Enabled — Callback function executes only when Enabled is true. See
“Enabling and Disabling the Listeners” on page 9-50 for an example.

• Recursive — Allow listener to cause the same event that triggered the
execution of the callback

Recursive is true by default. It is possible to create a situation where
infinite recursion reaches the recursion limit and eventually triggers
an error. If you set Recursive to false, the listener cannot execute
recursively if the callback triggers its own event.

“Ways to Create Listeners” on page 9-22 provides more specific information.

9-15

9 Events — Sending and Responding to Messages

Event Attributes

Table of Event Attributes
The following table lists the attributes you can set for events. To specify a
value for an attribute, assign the attribute value on the same line as the event
key word. For example, all the events defined in the following events block
have private ListenAccess and NotifyAccess attributes.

events (ListenAccess = 'private', NotifyAccess = 'private')
anEvent
anotherEvent

end

To define other events in the same class definition that have different
attribute settings, create another events block.

Attribute
Name Class Description

Hidden logical Default =
false

If true, event does not appear in list of events returned
by events function (or other event listing functions or
viewers).

ListenAccess • enumeration,
default = public

• meta.class object

• cell array of
meta.class
objects

Determines where you can create listeners for the event.

• public — Unrestricted access

• protected — Access from methods in class or
subclasses

• private — Access by class methods only (not from
subclasses)

• List classes that have listen access to this event.
Specify classes as meta.class objects in the form:

- A single meta.class object

- A cell array of meta.class objects. An empty cell
array, {}, is the same as private access.

9-16

Event Attributes

(Continued)

Attribute
Name Class Description

See “Controlling Access to Class Members” on page
10-24

NotifyAccess • enumeration,
default = public

• meta.class object

• cell array of
meta.class
objects

Determines where code can trigger the event

• public— Any code can trigger event

• protected— Can trigger event from methods in class
or derived classes

• private — Can trigger event by class methods only
(not from derived classes)

• List classes that have notify access to this event.
Specify classes as meta.class objects in the form:

- A single meta.class object

- A cell array of meta.class objects. An empty cell
array, {}, is the same as private access.

See “Controlling Access to Class Members” on page
10-24

9-17

9 Events — Sending and Responding to Messages

Events and Listeners — Syntax and Techniques

In this section...

“Naming Events” on page 9-18

“Triggering Events” on page 9-18

“Listening to Events” on page 9-19

“Defining Event-Specific Data” on page 9-21

“Ways to Create Listeners” on page 9-22

“Defining Listener Callback Functions” on page 9-24

“Callback Execution” on page 9-26

Naming Events
Define an event by declaring an event name inside an events block, typically
in the class that generates the event. For example, the following class creates
an event called ToggledState, which might be triggered whenever a toggle
button’s state changes.

classdef ToggleButton < handle
properties

State = false
end
events

ToggledState
end

end

Triggering Events
At this point, the ToggleButton class has defined a name that it associates
with the toggle button state changes—toggling on and toggling off. However,
a class method controls the actual firing of the events. To accomplish this, the
ToggleButton class adds a method to trigger the event:

classdef ToggleButton < handle
properties

State = false

9-18

Events and Listeners — Syntax and Techniques

end
events

ToggledState
end
methods
...

function OnStateChange(obj,newState)
% Call this method to check for state change

if newState ~= obj.State
obj.State = newState;
notify(obj,'ToggledState'); % Broadcast notice of event

end
end

end
end

The OnStateChange method calls notify to trigger the event, using the
handle of the ToggleButton object that owns the event and the string name
of the event.

Listening to Events
Once the call to notify triggers an event, MATLAB broadcasts a message
to all registered listeners. To register a listener for a specific event, use
the addlistener handle class method. For example, the following class
defines objects that listen for the ToggleState event defined in the class
ToggleButton.

classdef RespondToToggle < handle

methods

function obj = RespondToToggle(toggle_button_obj)

addlistener(toggle_button_obj,'ToggledState',@RespondToToggle.handleEvnt);

end

end

methods (Static)

function handleEvnt(src,evtdata)

if src.State

disp('ToggledState is true') % Respond to true ToggleState here

else

disp('ToggledState is false') % Respond to false ToggleState here

9-19

9 Events — Sending and Responding to Messages

end

end

end

end

The class RespondToToggle adds the listener from within its constructor.
The class defines the callback (handleEvnt) as a static method that accepts
the two standard arguments:

• src— the handle of the object triggering the event (i.e., a ToggleButton
object)

• evtdata — an event.EventData object

The listener executes the callback when the specific ToggleButton object
executes the notify method, which it inherits from the handle class.

For example, create instances of both classes:

tb = ToggleButton;
rtt = RespondToToggle(tb);

Whenever you call the ToggleButton object’s OnStateChange method, notify
triggers the event:

tb.OnStateChange(true)
ToggledState is true

tb.OnStateChange(false)
ToggledState is false

Removing Listeners
You can remove a listener object by calling delete on its handle. For example,
if the class RespondToToggle above saved the listener handle as a property,
you could delete the listener:

classdef RespondToToggle < handle

properties

ListenerHandle

end

9-20

Events and Listeners — Syntax and Techniques

methods

function obj = RespondToToggle(toggle_button_obj)

hl = addlistener(toggle_button_obj,'ToggledState',@RespondToToggle.handleEvnt);

obj.ListenerHandle = hl;

end

end

...

end

With this code change, you can remove the listener from an instance of the
RespondToToggle class. For example:

tb = ToggleButton;
rtt = RespondToToggle(tb);

At this point, the object rtt is listening for the ToggleState event triggered
by object tb. To remove the listener, call delete on the property containing the
listener handle:

delete(rtt.ListenerHandle)

You do not need to explicitly delete a listener. MATLAB automatically deletes
the listener when the object’s lifecycle ends (e.g., when the rtt object is
deleted).

See “Limiting Listener Scope — Constructing event.listener Objects Directly”
on page 9-23 for related information.

Defining Event-Specific Data
Suppose that you want to pass to the listener callback the state of the toggle
button as a result of the event. You can add more data to the default event
data by subclassing the event.EventData class and adding a property to
contain this information. You then can pass this object to the notify method.

classdef ToggleEventData < event.EventData
properties

NewState
end

methods

9-21

9 Events — Sending and Responding to Messages

function data = ToggleEventData(newState)
data.NewState = newState;

end
end

end

The call to notify uses the ToggleEventData constructor to create the
necessary argument.

notify(obj,'ToggledState',ToggleEventData(newState));

Ways to Create Listeners
When you call the notifymethod, the MATLAB runtime sends the event data
to all registered listener callbacks. There are two ways to create a listener:

• Use the addlistener method, which binds the listener to the lifecycle of
the object(s) that will generate the event. The listener object persists until
the object it is attached to is destroyed.

• Use the event.listener class constructor. In this case, the listeners you
create are not tied to the lifecycle of the object(s) being listened to. Instead
the listener is active so long as the listener object remains in scope and is
not deleted.

Attach Listener to Event Source — Using addlistener
The following code defines a listener for the ToggleState event:

lh = addlistener(obj,'ToggleState',@CallbackFunction)

The arguments are:

• obj — The object that is the source of the event

• ToggleState — The event name passed as a string

• @CallbackFunction— A function handle to the callback function

The listener callback function must accept at least two arguments, which
are automatically passed by the MATLAB runtime to the callback. The
arguments are:

9-22

Events and Listeners — Syntax and Techniques

• The source of the event (that is, obj in the call to addlistener)

• An event.EventData object, or a subclass of event.EventData , such as
the ToggleEventData object described earlier “Defining Event-Specific
Data” on page 9-21.

The callback function must be defined to accept these two arguments:

function CallbackFunction(src,evnt)
...

end

In cases where the event data (evnt) object is user defined, it must be
constructed and passed as an argument to the notify method. For example,
the following statement constructs a ToggleEventData object and passes
it to notify as the third argument:

notify(obj,'ToggledState',ToggleEventData(newState));

“Defining Listener Callback Functions” on page 9-24 provides more
information on callback syntax.

Limiting Listener Scope — Constructing event.listener Objects
Directly
You can also create listeners by calling the event.listener class constructor
directly. When you call the constructor instead of using addlistener to
create a listener, the listener exists only while the listener object you create is
in scope (e.g., within the workspace of an executing function). It is not tied to
the event-generating object’s existence.

The event.listener constructor requires the same arguments as used by
addlistener — the event-naming object, the event name, and a function
handle to the callback:

lh = event.listener(obj,'ToggleState',@CallbackFunction)

If you want the listener to persist beyond the normal variable scope, you
should use addlistener to create it.

9-23

9 Events — Sending and Responding to Messages

Temporarily Deactivating Listeners
The addlistener method returns the listener object so that you can set its
properties. For example, you can temporarily disable a listener by setting its
Enabled property to false:

lh.Enabled = false;

To re-enable the listener, set Enabled to true.

“Enabling and Disabling the Listeners” on page 9-50 provides an example.

Permanently Deleting Listeners
Calling delete on a listener object destroys it and permanently removes
the listener:

delete(lh) % Listener object is removed and destroyed

Defining Listener Callback Functions
Callbacks are functions that execute when the listener receives notification of
an event. Typically, you define a method in the class that creates the listener
as the callback function. Pass a function handle that references the method to
addlistener or the event.listener constructor when creating the listener.

function_handle provides more information on function handles.

All callback functions must accept at least two arguments:

• The handle of the object that is the source of the event

• An event.EventData object or an object that is derived from the
event.EventData class (see “Defining Event-Specific Data” on page 9-21
for an example that extends this class).

Callback Syntax
For an function:

@fuctionName

For an ordinary method called with an object of the class:

9-24

Events and Listeners — Syntax and Techniques

@obj.methodName

For an static method:

@ClassName.methodName

Adding Arguments to a Callback Function
Ordinary class methods (i.e., not static methods) require a class object as an
argument, so you need to add another argument to the callback function
definition. If your listener callback is a method of the class of an object, obj,
then your call to addlistener would use this syntax:

hlistener = addlistener(eventSourceObj,'MyEvent',@obj.listenMyEvent)

Another syntax uses an anonymous function.

See the “Anonymous Functions” section for general information on anonymous
functions

For example, create a method to use as your callback function and
reference this method as a function handle in a call to addlistener or the
event.listener constructor:

hlistener =

addlistener(eventSourceObj,'MyEvent',@(src,evnt)listenMyEvent(obj,src,evnt))

Then define the method in a method block as usual:

methods
function listenMyEvent(obj,src,evnt)

% obj - instance of this class
% src - object generating event
% evnt - the event data
...

end
end

“Variables in the Expression” provides information on variables used in
anonymous functions.

9-25

9 Events — Sending and Responding to Messages

Callback Execution
Listeners execute their callback function when notified that the event
has occurred. Listeners are passive observers in the sense that errors in
the execution of a listener callback does not prevent the execution of other
listeners responding to the same event, or execution of the function that
triggered the event.

Callback function execution continues until the function completes. If an
error occurs in a callback function, execution stops and control returns to the
calling function. Then any remaining listener callback functions execute.

Listener Order of Execution
The order in which listeners callback functions execute after the firing of an
event is undefined. However, all listener callbacks execute synchronously
with the event firing.

Managing Callback Errors
If you want to control how your program responds to error, use a try/catch
statement in your listener callback function to handle errors.

See “Respond to an Exception” and the MException class.

9-26

Listen for Changes to Property Values

Listen for Changes to Property Values

In this section...

“Creating Property Listeners” on page 9-27

“Property Event and Listener Classes” on page 9-29

“Aborting Set When Value Does Not Change” on page 9-31

Creating Property Listeners
You can listen to the predeclared property events (named: PreSet, PostSet,
PreGet, and PostGet) by creating a listener for those named events:

• Specify the SetObservable and/or GetObservable property attributes to
add listeners for set or get events.

• Define a callback function

• Create a property listener by including the name of the property as well as
the event in the call to addlistener (see “Add a Listener to the Property”
on page 9-29.)

• Optionally subclass event.data to create a specialized event data object to
pass to the callback function.

• Prevent execution of the callback if the new value is the same as the current
value (see “Aborting Set When Value Does Not Change” on page 9-31).

Set Property Attributes to Enable Property Events
In the properties block, enable the SetObservable attribute:

properties (SetObservable)
% Can define PreSet and PostSet property listeners
% for properties defined in this block

PropOne
PropTwo
...

end

9-27

9 Events — Sending and Responding to Messages

Define a Callback Function for the Property Event
The listener executes the callback function when MATLAB triggers the
property event. You must define the callback function to have two specific
arguments, which are passed to the function automatically when called by
the listener:

• Event source — a meta.property object describing the object that is the
source of the property event

• Event data — a event.PropertyEvent object containing information about
the event

You can pass additional arguments if necessary. It is often simple to define
this method as Static because these two arguments contain most necessary
information in their properties.

For example, suppose the handlePropEvents function is a static method of
the class creating listeners for two properties of an object of another class:

methods (Static)

function handlePropEvents(src,evnt)

switch src.Name % switch on the property name

case 'PropOne'

% PropOne has triggered an event

...

case 'PropTwo'

% PropTwo has triggered an event

...

end

end

end

Another possibility is to use the event.PropertyEvent object’s EventName
property in the switch statement to key off the event name (PreSet or
PostSet in this case).

“Class Metadata” on page 14-2 provides more information about the
meta.property class.

9-28

Listen for Changes to Property Values

Add a Listener to the Property
The addlistener handle class method enables you to attach a listener to a
property without storing the listener object as a persistent variable. For a
property events, use the four-argument version of addlistener.

If the call

addlistener(EventObject,'PropOne','PostSet',@ClassName.handlePropertyEvents);

The arguments are:

• EventObject— handle of the object generating the event

• PropOne— name of the property to which you want to listen

• PostSet— name of the event for which you want to listen

• @ClassName.handlePropertyEvents — function handle referencing a
static method, which requires the use of the class name

If your listener callback is an ordinary method and not a static method, the
syntax is:

addlistener(EventObject,'PropOne','PostSet',@obj.handlePropertyEvents);

where obj is the handle of the object defining the callback method.

If the listener callback is a function that is not a class method, you pass a
function handle to that function. Suppose the callback function is a package
function:

addlistener(EventObject,'PropOne','PostSet',@package.handlePropertyEvents);

See function_handle for more information on passing functions as
arguments.

Property Event and Listener Classes
The following two classes show how to create PostSet property listeners for
two properties — PropOne and PropTwo.

9-29

9 Events — Sending and Responding to Messages

Class Generating the Event
The PropEvent class enables property PreSet and PostSet event triggering
by specifying the SetObservable property attribute. These properties also
enable the AbortSet attribute, which prevents the triggering of the property
events if the properties are set to a value that is the same as their current
value (see “Aborting Set When Value Does Not Change” on page 9-31)

classdef PropEvent < handle
% enable property events with the SetObservable attribute
properties (SetObservable, AbortSet)

PropOne
PropTwo

end
methods

function obj = PropEvent(p1,p2)
if nargin > 0

obj.PropOne = p1;
obj.PropTwo = p2;

end
end

end
end

Class Defining the Listeners
The PropListener class defines two listeners:

• Property PropOne PostSet event

• Property PropTwo PostSet event

You could define listeners for other events or other properties using a similar
approach and it is not necessary to use the same callback function for each
listener. See the meta.property and event.PropertyEvent reference pages
for more on the information contained in the arguments passed to the listener
callback function.

classdef PropListener < handle

methods

function obj = PropListener(evtobj)

% Pass the object generating the event to the constructor

9-30

Listen for Changes to Property Values

% Add the listeners from the constructor

if nargin > 0

addlistener(evtobj,'PropOne','PostSet',@PropListener.handlePropEvents);

addlistener(evtobj,'PropTwo','PostSet',@PropListener.handlePropEvents);

end

end

end

methods (Static)

function handlePropEvents(src,evnt)

switch src.Name

case 'PropOne'

fprintf(1,'PropOne is %s\n',num2str(evnt.AffectedObject.PropOne))

case 'PropTwo'

fprintf(1,'PropTwo is %s\n',num2str(evnt.AffectedObject.PropTwo))

end

end

end

end

Aborting Set When Value Does Not Change
By default, MATLAB triggers the property PreSet and PostSet events,
invokes the property’s set method (if defined), and sets the property value,
even when the current value of the property is the same as the new value.
You can prevent this behavior by setting the property’s AbortSet attribute to
true. When AbortSet is true, MATLAB does not:

• Set the property value

• Trigger the PreSet and PostSet events

• Call the property’s set method, if one exists

When AbortSet is true, MATLAB gets the current property value to compare
it to the value you are assigning to the property. This causes the property
get method (get.Property) to execute, if one exists. However, MATLAB
does not catch errors resulting from the execution of this method and these
errors are visible to the user.

9-31

9 Events — Sending and Responding to Messages

How AbortSet Works
The following example shows how the AbortSet attribute works. The
AbortTheSet class defines a property, PropOne, that has listeners for the
PreGet and PreSet events and enables the AbortSet attribute. The behavior
of the post set/get events is equivalent so only the pre set/get events are used
for simplicity:

Note Save the AbortTheSet class in a file with the same name in a folder on
your MATLAB path.

classdef AbortTheSet < handle

properties (SetObservable, GetObservable, AbortSet)

PropOne = 7

end

methods

function obj = AbortTheSet(val)

obj.PropOne = val;

addlistener(obj,'PropOne','PreGet',@obj.getPropEvt);

addlistener(obj,'PropOne','PreSet',@obj.setPropEvt);

end

function propval = get.PropOne(obj)

disp('get.PropOne called')

propval = obj.PropOne;

end

function set.PropOne(obj,val)

disp('set.PropOne called')

obj.PropOne = val;

end

function getPropEvt(obj,src,evnt)

disp ('Pre-get event triggered')

end

function setPropEvt(obj,src,evnt)

disp ('Pre-set event triggered')

end

function disp(obj)

% Overload disp to avoid accessing property

disp (class(obj))

end

9-32

Listen for Changes to Property Values

end

end

The class specifies an initial value of 7 for the PropOne property. Therefore, if
you create an object with the property value of 7, there is not need to trigger
the PreSet event:

>> ats = AbortTheSet(7);
get.PropOne called

If you specify a value other than 7, then MATLAB triggers the PreSet event:

>> ats = AbortTheSet(9);
get.PropOne called
set.PropOne called

Similarly, if you set the PropOne property to the value 9, the AbortSet
attribute prevents the property assignment and the triggering of the PreSet
event. Notice also, that there is not PreGet event generated. Only the
property get method is called:

>> ats.PropOne = 9;
get.PropOne called

If you query the property value, the PreGet event is triggered:

>> a = ats.PropOne
Pre-get event triggered
get.PropOne called

If you set the PropOne property to a different value, MATLAB:

• Calls the property get method to determine if the value is changing

• Triggers the PreSet event

• Calls the property set method to set the new value

>> ats.PropOne = 11;
get.PropOne called
Pre-set event triggered
set.PropOne called

9-33

9 Events — Sending and Responding to Messages

Update Graphs Using Events and Listeners

In this section...

“Example Overview” on page 9-34

“Access Fully Commented Example Code” on page 9-35

“Techniques Demonstrated in This Example” on page 9-36

“Summary of fcneval Class” on page 9-36

“Summary of fcnview Class” on page 9-37

“Methods Inherited from Handle Class” on page 9-39

“Using the fcneval and fcnview Classes” on page 9-39

“Implementing the UpdateGraph Event and Listener” on page 9-42

“The PostSet Event Listener” on page 9-47

“Enabling and Disabling the Listeners” on page 9-50

Example Overview
This example defines two classes:

• fcneval — The function evaluator class contains a MATLAB expression
and evaluates this expression over a specified range

• fcnview — The function viewer class contains a fcneval object and
displays surface graphs of the evaluated expression using the data
contained in fcneval.

This class defines two events:

• A class-defined event that occurs when a new value is specified for the
MATLAB function

• A property event that occurs when the property containing the limits is
changed

The following diagram shows the relationship between the two objects. The
fcnview object contains a fcneval object and creates graphs from the data it

9-34

Update Graphs Using Events and Listeners

contains. fcnview creates listeners to change the graphs if any of the data in
the fcneval object change.

fcnview

Properties

Listeners

fcneval object
graph

Lm property
UpdateGraph

fcneval

Properties

Events

FofXY
Lm observable
Data

UpdateGraph

Access Fully Commented Example Code
You can display the code for this example in a popup window that contains
detailed comments and links to related sections of the documentation by
clicking these links:

fcneval class

fcnview class

createViews static method

You can open all files in your editor by clicking this link:

Open in editor

To use the classes, save the files in folders with the following names:

9-35

9 Events — Sending and Responding to Messages

• @fcneval/fcneval.m

• @fcnview/fcnview.m

• @fcnview/createViews.m

The @-folder’s parent folder must be on the MATLAB path.

Techniques Demonstrated in This Example

• Naming an event in the class definition

• Triggering an event by calling notify

• Enabling a property event via the SetObservable attribute

• Creating listeners for class-defined events and property PostSet events

• Defining listener callback functions that accept additional arguments

• Enabling and disabling listeners

Summary of fcneval Class
The fcneval class is designed to evaluate a MATLAB expression over a
specified range of two variables. It is the source of the data that is graphed
as a surface by instances of the fcnview class. It is the source of the events
used in this example.

Property Value Purpose

FofXY function
handle

MATLAB expression (function of two
variables).

Lm two-element
vector

Limits over which function is evaluated in
both variables. SetObservable attribute set
to true to enable property event listeners.

Data structure
with x,
y, and z
matrices

Data resulting from evaluating the function.
Used for surface graph. Dependent attribute
set to true, which means the get.Data
method is called to determine property value
when queried and no data is stored.

9-36

Update Graphs Using Events and Listeners

Event When Triggered

UpdateGraph FofXY property set function (set.FofXY) calls the notify
method when a new value is specified for the MATLAB
expression on an object of this class.

Method Purpose

fcneval Class constructor. Inputs are function handle and
two-element vector specifying the limits over which to
evaluate the function.

set.FofXY FofXY property set function. Called whenever property
value is set, including during object construction.

set.Lm Lm property set function. Used to test for valid limits.

get.Data Data property get function. This method calculates the
values for the Data property whenever that data is queried
(by class members or externally).

grid A static method (Static attribute set to true) used in the
calculation of the data.

Summary of fcnview Class
Instances of the fcnview class contain fcneval objects as the source of data
for the four surface graphs created in a function view. fcnview creates the
listeners and callback functions that respond to changes in the data contained
in fcneval objects.

Property Value Purpose

FcnObject fcneval object This object contains the data that is
used to create the function graphs.

HAxes axes handle Each instance of a fcnview object
stores the handle of the axes
containing its subplot.

9-37

9 Events — Sending and Responding to Messages

Property Value Purpose

HLUpdateGraph event.listener
object for
UpdateGraph
event

Setting the event.listener object’s
Enabled property to true enables the
listener; false disables listener.

HLLm event.listener
object for Lm
property event

Setting the event.listener object’s
Enabled property to true enables the
listener, false disables listener.

HEnableCm uimenu handle Item on context menu used to enable
listeners (used to handle checked
behavior)

HDisableCm uimenu handle Item on context menu used to disable
listeners (used to manage checked
behavior)

HSurface surface handle Used by event callbacks to update
surface data.

Method Purpose

fcnview Class constructor. Input is fcneval object.

createLisn Calls addlistener to create listeners for
UpdateGraph and Lm property PostSet listeners.

lims Sets axes limits to current value of fcneval object’s
Lm property. Used by event handlers.

updateSurfaceData Updates the surface data without creating a new
object. Used by event handlers.

listenUpdateGraph Callback for UpdateGraph event.

listenLm Callback for Lm property PostSet event

delete Delete method for fcnview class.

createViews Static method that creates an instance of the
fcnview class for each subplot, defines the context
menus that enable/disable listeners, and creates the
subplots

9-38

Update Graphs Using Events and Listeners

Methods Inherited from Handle Class
Both the fcneval and fcnview classes inherit methods from the handle class.
The following table lists only those inherited methods used in this example.

“Handle Class Methods” on page 5-12 provides a complete list of methods that
are inherited when you subclass the handle class.

Methods
Inherited
from Handle
Class

Purpose

addlistener Register a listener for a specific event and attach listener
to event-defining object.

notify Trigger an event and notify all registered listeners.

Using the fcneval and fcnview Classes
This sections explains how to use the classes.

• Create an instance of the fcneval class to contain the MATLAB expression
of a function of two variables and the range over which you want to
evaluate this function

• Use the fcnview class static function createViews to visualize the function

• Change the MATLAB expression or the limits contained by the fcneval
object and all the fcnview objects respond to the events generated.

You create a fcneval object by calling its constructor with two arguments—an
anonymous function and a two-element, monotonically increasing vector.
For example:

feobject = fcneval(@(x,y) x.*exp(-x.^2-y.^2),[-2 2]);

Use the createViews static method to create the graphs of the function. Note
that you must use the class name to call a static function:

fcnview.createViews(feobject);

9-39

9 Events — Sending and Responding to Messages

The createView method generates four views of the function contained in the
fcneval object.

Each subplot defines a context menu that can enable and disable the listeners
associated with that graph. For example, if you disable the listeners on
subplot 221 (upper left) and change the MATLAB expression contained
by the fcneval object, only the remaining three subplots update when the
UpdateGraph event is triggered:

feobject.FofXY = @(x,y) x.*exp(-x.^.5-y.^.5);

9-40

Update Graphs Using Events and Listeners

Similarly, if you change the limits by assigning a value to the feobject.Lm
property, the feobject triggers a PostSet property event and the listener
callbacks update the graph.

feobject.Lm = [-8 3];

In this figure the listeners are re-enabled via the context menu for subplot
221. Because the listener callback for the property PostSet event also
updates the surface data, all views are now synchronized

9-41

9 Events — Sending and Responding to Messages

Implementing the UpdateGraph Event and Listener
The UpdateGraph event occurs when the MATLAB representation of the
mathematical function contained in the fcneval object is changed. The
fcnview objects that contain the surface graphs are listening for this event, so
they can update the graphs to represent the new function.

Defining and Firing the UpdateGraph Event
The UpdateGraph event is a class-defined event. The fcneval class names
the event and calls notify when the event occurs.

9-42

Update Graphs Using Events and Listeners

3. The notify method triggers an
 event, and a message is broadcast.

5. The callback function is executed.

4. A listener awaiting the message
 executes its callback.

2. Setting the property runs a set access method,
 which, in turn, executes notify.

1. A property is assigned a new value. myfunceval

Properties
FofXY

Methods

Events
UpdateGraph

set.FofXY

Listener

Properties
EventName = ‘UpdateGraph’
FunctionHandle = @listenUpdateGraph

myfuncview

Methods
listenUpdateGraph

UpdateGraph

obj.FofXY = @(x,y)x^2+y^2

function set.FofXY(obj,func)
 obj.FofXY = func;
 notify(obj,’UpdateGraph’);
end

The fcnview class defines a listener for this event. When fcneval triggers
the event, the fcnview listener executes a callback function that performs
the follow actions:

• Determines if the handle of the surface object stored by the fcnview object
is still valid (that is, does the object still exist)

• Updates the surface XData, YData, and ZData by querying the fcneval
object’s Data property.

9-43

9 Events — Sending and Responding to Messages

The fcneval class defines an event name in an event block:

events
UpdateGraph

end

Determining When to Trigger the Event
The fcneval class defines a property set method for the FofXY property. FofXY
is the property that stores the MATLAB expression for the mathematical
function. This expression must be a valid MATLAB expression for a function
of two variables.

The set.FofXY method:

• Determines the suitability of the expression

• If the expression is suitable:

- Assigns the expression to the FofXY property

- Triggers the UpdateGraph event

If fcneval.isSuitable does not return an MException object, the set.FofXY
method assigns the value to the property and triggers the UpdateGraph event.

function set.FofXY(obj,func)
% Determine if function is suitable to create a surface

me = fcneval.isSuitable(func);
if ~isempty(me)

throw(me)
end

% Assign property value
obj.FofXY = func;

% Trigger UpdateGraph event
notify(obj,'UpdateGraph');

end

Determining Suitability of the Expression
The set.FofXY method calls a static method (fcneval.isSuitable) to
determine the suitability of the specified expression. fcneval.isSuitable

9-44

Update Graphs Using Events and Listeners

returns an MException object if it determines that the expression is
unsuitable. fcneval.isSuitable calls the MException constructor directly
to create more useful error messages for the user.

set.FofXY issues the exception using the MException throw method. Issuing
the exception terminates execution of set.FofXY and prevents the method
from making an assignment to the property or triggering the UpdateGraph
event.

Here is the fcneval.isSuitable method:

function isOk = isSuitable(funcH)

v = [1 1;1 1];

% Can the expression except 2 numeric inputs

try

funcH(v,v);

catch %#ok<CTCH>

me = MException('DocExample:fcneval',...

['The function ',func2str(funcH),' Is not a suitable F(x,y)']);

isOk = me;

return

end

% Does the expression return non-scalar data

if isscalar(funcH(v,v));

me = MException('DocExample:fcneval',...

['The function ',func2str(funcH),'' Returns a scalar when evaluated']);

isOk = me;

return

end

isOk = [];

end

The fcneval.isSuitable method could provide additional test to ensure that
the expression assigned to the FofXY property meets the criteria required by
the class design.

Other Approaches
The class could have implemented a property set event for the FofXY property
and would, therefore, not need to call notify (see “Listen for Changes

9-45

9 Events — Sending and Responding to Messages

to Property Values” on page 9-27). Defining a class event provides more
flexibility in this case because you can better control event triggering.

For example, suppose you wanted to update the graph only if the new data
is significantly different. If the new expression produced the same data
within some tolerance, the set.FofXY method could not trigger the event and
avoid updating the graph. However, the method could still set the property
to the new value.

Defining the Listener and Callback for the UpdateGraph Event
The fcnview class creates a listener for the UpdateGraph event using the
addlistener method:

obj.HLUpdateGraph = addlistener(obj.FcnObject,'UpdateGraph',...
@(src,evnt)listenUpdateGraph(obj,src,evnt));

% Add obj to argument list

The fcnview object stores a handle to the event.listener object in its
HLUpdateGraph property, which is used to enable/disable the listener by a
context menu (see “Enabling and Disabling the Listeners” on page 9-50).

The fcnview object (obj) is added to the two default arguments (src, evnt)
passed to the listener callback. Keep in mind, the source of the event (src) is
the fcneval object, but the fcnview object contains the handle of the surface
object that is updated by the callback.

The listenUpdateGraph function is defined as follows:

function listenUpdateGraph(obj,src,evnt)
if ishandle(obj.HSurface) % If surface exists

obj.updateSurfaceData % Update surface data
end

end

The updateSurfaceData function is a class method that updates the surface
data when a different mathematical function is assigned to the fcneval
object. Updating a graphics object data is generally more efficient than
creating a new object using the new data:

function updateSurfaceData(obj)

9-46

Update Graphs Using Events and Listeners

% Get data from fcneval object and set surface data
set(obj.HSurface,...

'XData',obj.FcnObject.Data.X,...
'YData',obj.FcnObject.Data.Y,...
'ZData',obj.FcnObject.Data.Matrix);

end

The PostSet Event Listener
All properties support the predefined PostSet event (See “Property-Set
and Query Events” on page 9-14 for more information on property events).
This example uses the PostSet event for the fcneval Lm property. This
property contains a two-element vector specifying the range over which the
mathematical function is evaluated. Just after this property is changed (by
a statement like obj.Lm = [-3 5];), the fcnview objects listening for this
event update the graph to reflect the new data.

9-47

9 Events — Sending and Responding to Messages

3. A message is broadcast.

5. The callback function is executed.

4. A listener awaiting the message
 executes its callback.

2. The SetObservable attribute of Properties
 is set to True, so setting the property
 automatically triggers a PostSet event.

 Note that methods and events did not have
 to be declared in myfunceval.

1. New limits are assigned. myfunceval

Properties (SetObservable)
Lm

Listener

Properties
EventName = ‘PostSet’
FunctionHandle = @listenLm

myfuncview

Methods
listenLm

PostSet

obj.Lm = [-3 5];

Sequence During the Lm Property Assignment
The fcneval class defines a set function for the Lm property. When a value is
assigned to this property during object construction or property reassignment,
the following sequence occurs:

1 An attempt is made to assign argument value to Lm property.

2 The set.Lm method executes to check whether the value is in appropriate
range — if yes, it makes assignment, if no, it generates an error.

3 If the value of Lm is set successfully, the MATLAB runtime triggers a
PostSet event.

9-48

Update Graphs Using Events and Listeners

4 All listeners execute their callbacks, but the order is nondeterministic.

The PostSet event does not occur until an actual assignment of the property
occurs. The property set function provides an opportunity to deal with
potential assignment errors before the PostSet event occurs.

Enabling the PostSet Property Event
To create a listener for the PostSet event, you must set the property’s
SetObservable attribute to true:

properties (SetObservable = true)
Lm = [-2*pi 2*pi]; % specifies default value

end

The MATLAB runtime automatically triggers the event so it is not necessary
to call notify.

“Specifying Property Attributes” on page 6-7 provides a list of all property
attributes.

Defining the Listener and Callback for the PostSet Event
The fcnview class creates a listener for the PostSet event using the
addlistener method:

obj.HLLm = addlistener(obj.FcnObject,'Lm','PostSet',...
@(src,evnt)listenLm(obj,src,evnt)); % Add

obj to argument list

The fcnview object stores a handle to the event.listener object in its HLLm
property, which is used to enable/disable the listener by a context menu (see
“Enabling and Disabling the Listeners” on page 9-50).

The fcnview object (obj) is added to the two default arguments (src, evnt)
passed to the listener callback. Keep in mind, the source of the event (src) is
the fcneval object, but the fcnview object contains the handle of the surface
object that is updated by the callback.

9-49

9 Events — Sending and Responding to Messages

The callback sets the axes limits and updates the surface data because
changing the limits causes the mathematical function to be evaluated over a
different range:

function listenLm(obj,src,evnt)
if ishandle(obj.HAxes) % If there is an axes

lims(obj); % Update its limits
if ishandle(obj.HSurface) % If there is a surface

obj.updateSurfaceData % Update its data
end

end
end

Enabling and Disabling the Listeners
Each fcnview object stores the handle of the listener objects it creates so
that the listeners can be enabled or disabled via a context menu after the
graphs are created. All listeners are instances of the event.listener class,
which defines a property called Enabled. By default, this property has a
value of true, which enables the listener. If you set this property to false,
the listener still exists, but is disabled. This example creates a context menu
active on the axes of each graph that provides a way to change the value of
the Enabled property.

Context Menu Callback
There are two callbacks used by the context menu corresponding to the two
items on the menu:

• Listen— Sets the Enabled property for both the UpdateGraph and PostSet
listeners to true and adds a check mark next to the Listen menu item.

• Don’t Listen — Sets the Enabled property for both the UpdateGraph
and PostSet listeners to false and adds a check mark next to the Don’t
Listen menu item.

Both callbacks include the fcnview object as an argument (in addition to the
required source and event data arguments) to provide access to the handle
of the listener objects.

The enableLisn function is called when the user selects Listen from the
context menu.

9-50

Update Graphs Using Events and Listeners

function enableLisn(obj,src,evnt)
obj.HLUpdateGraph.Enabled = true; % Enable listener
obj.HLLm.Enabled = true; % Enable listener
set(obj.HEnableCm,'Checked','on') % Check Listen
set(obj.HDisableCm,'Checked','off') % Uncheck Don't Listen

end

The disableLisn function is called when the user selects Don’t Listen from
the context menu.

function disableLisn(obj,src,evnt)
obj.HLUpdateGraph.Enabled = false; % Disable listener
obj.HLLm.Enabled = false; % Disable listener
set(obj.HEnableCm,'Checked','off') % Unheck Listen
set(obj.HDisableCm,'Checked','on') % Check Don't Listen

end

9-51

9 Events — Sending and Responding to Messages

9-52

10

Building on Other Classes

• “Hierarchies of Classes — Concepts” on page 10-2

• “Creating Subclasses — Syntax and Techniques” on page 10-7

• “Modifying Superclass Methods and Properties” on page 10-14

• “Subclassing Multiple Classes” on page 10-18

• “Controlling Allowed Subclasses” on page 10-20

• “Controlling Access to Class Members” on page 10-24

• “Supporting Both Handle and Value Subclasses” on page 10-34

• “Subclassing MATLAB Built-In Types” on page 10-43

• “Determining the Class of an Array” on page 10-73

• “Defining Abstract Classes” on page 10-77

• “Defining Interfaces” on page 10-82

10 Building on Other Classes

Hierarchies of Classes — Concepts

In this section...

“Classification ” on page 10-2

“Developing the Abstraction” on page 10-3

“Designing Class Hierarchies” on page 10-4

“Super and Subclass Behavior” on page 10-4

“Implementation and Interface Inheritance” on page 10-5

Classification
Organizing classes into hierarchies facilitates the reuse of code and the reuse
of solutions to design problems that have already been solved. You can
think of class hierarchies as sets — supersets (referred to as superclasses or
base classes), and subsets (referred to as subclasses or derived classes). For
example, the following picture shows how you could represent an employee
database with classes.

10-2

Hierarchies of Classes — Concepts

Employees

Sales People and Engineers are
subsets of Employees

Test
Engineers

Sales
People

Engineers

Employees

Base class

Properties
Name
Address
Department

SalesPerson
(is an Employees)

Derived classes

Properties
Commission
Region

Engineer
(is an Employees)

Properties
Products
Team

TestEngineer
(is an Engineer)

Properties
TestStage

At the root of the hierarchy is the Employees class. It contains data and
operations that apply to the set of all employees. Contained in the set
of employees are subsets whose members, while still employees, are also
members of sets that more specifically define the type of employee. Subclasses
like TestEngineer are examples of these subsets.

Developing the Abstraction
Classes are representations of real world concepts or things. When designing
a class, form an abstraction of what the class represents. Consider an
abstraction of an employee and what are the essential aspects of employees

10-3

10 Building on Other Classes

for the intended use of the class. Name, address, and department can be
what all employees have in common.

When designing classes, your abstraction should contain only those elements
that are necessary. For example, the employee hair color and shoe size
certainly characterize the employee, but are probably not relevant to the
design of this employee class. Their sales region is relevant only to some
employee so this characteristic belongs in a subclass.

Designing Class Hierarchies
As you design a system of classes, put common data and functionality in a
superclass, which you then use to derive subclasses. The subclasses inherit
the data and functionality of the superclass and define only aspects that are
unique to their particular purposes. This approach provides advantages:

• Avoid duplicating code that is common to all classes.

• Add or change subclasses at any time without modifying the superclass or
affecting other subclasses.

• If the superclass changes (for example, all employees are assigned a
number), then subclass automatically get these changes.

Super and Subclass Behavior
Subclass objects behave like objects of the superclass because they are
specializations of the superclass. This fact facilitates the development of
related classes that behave similarly, but are implemented differently.

A Subclass Object “Is A” Superclass Object
You can usually describe the relationship between an object of a subclass and
an object of its superclass with a statement like:

The subclass is a superclass . For example: An Engineer is an Employee.

This relationship implies that objects belonging to a subclass have the same
properties, methods, and events as the superclass, as well as any new features
defined by the subclass. Test this relationship with the isa function.

10-4

Hierarchies of Classes — Concepts

Treat Subclass Objects Like Superclass Objects
You can pass a subclass object to a superclass method, but you can access only
those properties that the superclass defines. This behavior enables you to
modify the subclasses without affecting the superclass.

Two points about super and subclass behavior to keep in mind are:

• Methods defined in the superclass can operate on subclass objects.

• Methods defined in the subclass cannot operate on superclass objects.

Therefore, you can treat an Engineer object like any other Employees object,
but an Employee object cannot pass for an Engineer object.

Limitations to Object Substitution
MATLAB determines the class of an object based on its most specific class.
Therefore, an Engineer object is of class Engineer, while it is also an
Employees object, as using the isa function reveals.

Generally, MATLAB does not allow you to create arrays containing a mix of
superclass and subclass objects because an array can be of only one class. If
you attempt to concatenate objects of different classes, MATLAB looks for a
converter method defined by the less dominant class (usually, the left-most
object in the expression is the dominant class).

See “Concatenating Objects of Different Classes” on page 8-13 for more
information.

See matlab.mixin.Heterogeneous for information on defining heterogeneous
class hierarchies.

See “Converting Objects to Another Class” on page 15-11 for information on
defining converter methods.

Implementation and Interface Inheritance
MATLAB classes support both the inheritance of implemented methods from
a superclass and the inheritance of interfaces defined by abstract methods
in the superclass.

10-5

10 Building on Other Classes

Implementation inheritance enables code reuse by subclasses. For example,
an employee class can have a submitStatus method that all employee
subclasses can use. Subclasses can extend an inherited method to provide
specialized functionality, while reusing the common aspects. See “Modifying
Superclass Methods and Properties” on page 10-14 for more information on
this process.

Interface inheritance is useful in cases where you want a group of classes
to provide a common interface, but these classes create specialized
implementations of methods and properties that define the interface.

Create an interface using an abstract class as the superclass. This class
defines the methods and properties that you must implement in the
subclasses, but does not provide an implementation.

The subclasses must provide their own implementation of the abstract
members of the superclass. To create an interface, define methods and
properties as abstract using their Abstract attribute.

See “Defining Abstract Classes” on page 10-77 for more information and an
example.

10-6

Creating Subclasses — Syntax and Techniques

Creating Subclasses — Syntax and Techniques

In this section...

“Defining a Subclass” on page 10-7

“Initializing Superclasses from Subclasses” on page 10-7

“Constructor Arguments and Object Initialization” on page 10-10

“Call Only Direct Superclass from Constructor” on page 10-10

“Sequence of Constructor Calls in a Class Hierarchy” on page 10-12

“Using a Subclass to Create an Alias for an Existing Class” on page 10-12

Defining a Subclass
To define a class that is a subclass of another class, add the superclass to
the classdef line after a < character:

classdef classname < superclassname

When inheriting from multiple classes, use the & character to indicate the
combination of the superclasses:

classdef classname < super1 & super2

See “Class Member Compatibility” on page 10-18 for more information on
deriving from multiple superclasses.

Class Attributes
Subclasses do not inherit superclass attributes.

Initializing Superclasses from Subclasses
Use the following syntax to initialize the object for each superclass within the
subclass constructor.

obj@baseclass1(args);

...

10-7

10 Building on Other Classes

obj@baseclassN(args);

Where obj is the output of the constructor, baseclass is the name of a
superclass, and args are any arguments required by the respective superclass
constructor.

For example, the following segment of a class definition shows a class called
stock that is a subclass of a class called asset.

classdef stock < asset
methods

function s = stock(asset_args,...)
if nargin == 0

...
end
% Call asset constructor
s = s@asset(asset_args);
...

end
end

end

“Constructing Subclasses” on page 7-20 provides more information on creating
subclass constructor methods.

Referencing Superclasses Contained in Packages
If you are deriving a class from a superclass that is contained in a package
and you want to initialize the object for the superclass, include the package
name. For example:

classdef stock < financial.asset
methods

function s = stock(asset_args,...)
if nargin == 0

...
end
% Call asset constructor
s = s@financial.asset(asset_args);
...

end

10-8

Creating Subclasses — Syntax and Techniques

end
end

Initializing Objects When Using Multiple Superclasses
If you are deriving a class from multiple superclasses, initialize the subclass
object with calls to each superclass constructor:

classdef stock < financial.asset & trust.member
methods

function s = stock(asset_args,member_args,...)
if nargin == 0

...
end
% Call asset and member class constructors
s = s@financial.asset(asset_args)
s = s@trust.member(member_args)
...

end
end

end

Explicitly calling each superclass constructor enables you to:

• Pass arguments to superclass constructors

• Control the order in which MATLAB calls the superclass constructors

If you do not explicitly call the superclass constructors from the subclass
constructor, MATLAB implicitly calls these constructors with no arguments.
In this case, the superclass constructors must support no argument syntax.
See “Supporting the No Input Argument Case” on page 7-19 for more
information.

In the case of multiple superclasses, MATLAB does not guarantee any
specific calling sequence. If the order in which MATLAB calls the superclass
constructors is important, you must explicitly call the superclass constructors
from the subclass constructor.

10-9

10 Building on Other Classes

Constructor Arguments and Object Initialization
You cannot conditionalize calls to the superclass initialization of the object.
Locate calls to superclass constructors outside any conditional code blocks.

However, always ensure that your class constructor supports the zero
arguments syntax. You can satisfy the need for a zero-argument syntax by
assigning appropriate values to input argument variables before constructing
the object:

For example, the stock class constructor supports the no argument case
with the if statement, but initializes the object for the superclass outside
of the if code block.

classdef stock < financial.asset
properties

SharePrice
end
methods

function s = stock(name,pps)
% Support no input argument case
if nargin == 0

name = '';
pps = 0;

end
% Call superclass constructor
s = s@financial.asset(name)
% Assign property value
s.SharePrice = pps;

end
end

end

See “Supporting the No Input Argument Case” on page 7-19.

Call Only Direct Superclass from Constructor
You cannot call an indirect superclass constructor from a subclass constructor.
For example, suppose class B derives from class A and class C derives from
class B. The constructor for class C cannot call the constructor for class A to
initialize properties. Class Bmust make the call to initialize class A properties.

10-10

Creating Subclasses — Syntax and Techniques

The following implementations of classes A, B, and C show how to design this
relationship in each class.

Class A defines properties x and y, but assigns a value only to x:

classdef A
properties

x
y

end
methods

function obj = A(x)
obj.x = x;

end
end

end

Class B inherits properties x and y from class A. The class B constructor calls
the class A constructor to initialize x and then assigns a value to y.

classdef B < A
methods

function obj = B(x,y)
obj = obj@A(x);
obj.y = y;

end
end

end

Class C accepts values for the properties x and y, and passes these values to
the class B constructor, which in turn calls the class A constructor:

classdef C < B
methods

function obj = C(x,y)
obj = obj@B(x,y);

end
end

end

10-11

10 Building on Other Classes

Sequence of Constructor Calls in a Class Hierarchy
MATLAB always calls the most specific subclass constructor first to enable
you to call superclass constructors explicitly. Suppose you have a hierarchy of
class in which ClassC derives from ClassB, which derives from ClassA:

ClassB

ClassC

ClassA

MATLAB always calls the most specific class constructor (ClassC in this case)
first. This approach enables you to process input arguments and perform any
necessary setup before calling the superclass constructors.

If you do not make an explicit call to a superclass constructor from the subclass
constructor, MATLAB makes the implicit call before accessing the object.
The order is always from most specific to least specific and all the superclass
constructors must finish executing before the subclass can access the object.

You can change the order in which class constructors are called by calling
superclass constructors explicitly from the subclass constructor.

Using a Subclass to Create an Alias for an Existing
Class
You can refer to a class using a different name by creating an alias for that
class. This technique is like the C++ typedef concept. To create an alias,
create an empty subclass:

classdef newclassname < oldclassname
end

10-12

Creating Subclasses — Syntax and Techniques

The old class constructor must be callable with zero input arguments. If not,
see “Old Class Constructor Requires Arguments” on page 10-13.

This technique is useful when reloading objects that you saved using the
old class name. However, the class of the object reflects the new name. For
example,

class(obj)

returns the new class name.

Old Class Constructor Requires Arguments
If the old class constructor requires arguments, add a constructor to the new
class:

classdef NewClass < OldClass
methods

function obj = NewClass(x,y)
obj = obj@OldClass(x,y);

end
end

10-13

10 Building on Other Classes

Modifying Superclass Methods and Properties

In this section...

“Modifying Superclass Methods” on page 10-14

“Modifying Superclass Properties” on page 10-16

“Private Local Property Takes Precedence in Method” on page 10-16

Modifying Superclass Methods
An important concept in class design is that a subclass object is also an object
of its superclass. Therefore, you can pass a subclass object to a superclass
method and have the method execute properly. At the same time, you can
apply special processing to the unique aspects of the subclass. Some useful
techniques include:

• Calling a superclass method from within a subclass method

• Redefining in the subclass protected methods called from within a public
superclass method

• Defining the same named methods in both super and subclass, but using
different implementations

Extending Superclass Methods
Subclass methods can call superclass methods of the same name. This fact
enables you to extend a superclass method in a subclass without completely
redefining the superclass method. For example, suppose that both superclass
and subclass defines a method called foo. The method names are the same so
the subclass method can call the superclass method. However, the subclass
method can also perform other steps before and after the call to the superclass
method. It can operate on the specialized parts to the subclass that are not
part of the superclass.

For example, this subclass defines a foo method, which calls the superclass
foo method

classdef sub < super
methods

10-14

Modifying Superclass Methods and Properties

function foo(obj)
preprocessing steps
foo@super(obj); % Call superclass foo method
postprocessing steps

end
end

end

See “Invoking Superclass Methods in Subclass Methods” on page 7-14 for
more on this syntax.

Completing Superclass Methods
A superclass method can define a process that executes in a series of steps
using a protected method for each step (Access attribute set to protected).
Subclasses can then create their own versions of the protected methods that
implement the individual steps in the process.

Implement this technique as shown here:

classdef super
methods

function foo(obj)
step1(obj)
step2(obj)
step3(obj)

end
end
methods (Access = protected)

function step1(obj)
superclass version

end
...

end
end

The subclass does not reimplement the foo method, it reimplements only
the methods that carry out the series of steps (step1(obj), step2(obj),
step3(obj)). That is, the subclass can specialize the actions taken by each
step, but does not control the order of the steps in the process. When you pass

10-15

10 Building on Other Classes

a subclass object to the superclass foo method, MATLAB calls the subclass
step methods because of the dispatching rules.

classdef sub < super
...
methods (Access = protected)

function step1(obj)
subclass version

end
...

end
end

Redefining Superclass Methods
You can completely redefine a superclass method. In this case, both the
superclass and the subclass would define the same named method.

Modifying Superclass Properties
There are two separate conditions under which you can redefine superclass
properties:

• The value of the superclass property Abstract attribute is true

• The values of the superclass property SetAccess and GetAccess attributes
are private

In the first case, the superclass is just requesting that you define a concrete
version of this property to ensure a consistent interface. In the second case,
only the superclass can access the private property, so the subclass is free to
reimplement it in any way.

Private Local Property Takes Precedence in Method
When a subclass property has the same name as a superclass private
property, and a method of the superclass references the property name,
MATLAB always accesses the property defined by the calling method’s class.
For example, given the following classes, Sub and Super:

classdef Super

10-16

Modifying Superclass Methods and Properties

properties (Access = private)
Prop = 2;

end
methods

function p = superMethod(obj)
p = obj.Prop;

end
end

end

classdef Sub < Super
properties

Prop = 1;
end

end

If you create an instance of the subclass and use it to call the superclass
method, MATLAB access the private property of the method’s class:

>> subObj = Sub
subObj =

Sub

Properties:
Prop: 1

Methods, Superclasses
>> subObj.superMethod
ans =

2

10-17

10 Building on Other Classes

Subclassing Multiple Classes

In this section...

“Class Member Compatibility” on page 10-18

“Using Multiple Inheritance” on page 10-19

Class Member Compatibility
When you create a subclass derived from multiple classes, the subclass
inherits the properties, methods, and events defined by all specified
superclasses. If more than one superclass defines a property, method, or
event having the same name, there must be an unambiguous resolution to
the multiple definitions. You cannot derive a subclass from any two or more
classes that define incompatible class members.

There are various situations where you can resolve name and definition
conflicts, as described in the following sections.

Property Conflicts
If two or more superclasses define a property with the same name, then at
least one of the following must be true:

• All, or all but one of the properties must have their SetAccess and
GetAccess attributes set to private

• The properties have the same definition in all superclasses (for example,
when all superclasses inherited the property from a common base class)

Method Conflicts
If two or more superclasses define methods with the same name, then at
least one of the following must be true:

• The method’s Access attribute is private so only the defining superclass
can access the method.

• The method has the same definition in all subclasses. This situation can
occur when all superclasses inherit the method from a common base class
and none of the superclasses override the inherited definition.

10-18

Subclassing Multiple Classes

• The subclass redefines the method to disambiguate the multiple definitions
across all superclasses. This means that the superclass methods must not
have their Sealed attribute set to true.

• Only one superclass defines the method as Sealed, in which case, the
subclass adopts the sealed method definition.

• The superclasses define the methods as Abstract and rely on the subclass
to define the method.

Event Conflicts
If two or more superclasses define events with the same name, then at least
one of the following must be true:

• The event’s ListenAccess and NotifyAccess attributes must be private.

• The event has the same definition in all superclasses (for example, when
all superclasses inherited the event from a common base class)

Using Multiple Inheritance
Resolving the potential conflicts involved when defining a subclass from
multiple classes often reduces the value of this approach. For example,
problems can arise when you enhance superclasses in future versions and
introduce new conflicts.

Reduce potential problems by implementing only one unrestricted superclass.
In all other superclasses, all methods are abstract and must be defined by a
subclass or inherited from the unrestricted superclass.

In general, when using multiple inheritance, ensure that all superclasses
remain free of conflicts in definition.

See “Defining a Subclass” on page 10-7 for the syntax used to derive a subclass
from multiple superclasses.

See “Supporting Both Handle and Value Subclasses” on page 10-34 for
techniques that provide greater flexibility when using multiple superclasses.

10-19

10 Building on Other Classes

Controlling Allowed Subclasses

In this section...

“Basic Knowledge” on page 10-20

“Why Control Allowed Subclasses” on page 10-20

“Specify Allowed Subclasses” on page 10-21

“Define a Sealed Hierarchy of Classes” on page 10-22

Basic Knowledge
The material presented in this section builds on an understanding of the
following information:

• “Class Metadata” on page 14-2

• “Specifying Attributes” on page 3-23

Why Control Allowed Subclasses
A class definition can specify a list of classes that it allows to subclass
the class. Classes not in the list cannot subclass the class. Use the
AllowedSubclasses class attribute to specify the allowed subclasses.

The AllowedSubclasses attribute provides a design point between Sealed
classes, which do not allow subclassing, and the default behavior, which does
not restrict subclassing.

By controlling the allowed subclasses, you can create a sealed hierarchy of
classes. That is, a system of classes that enables a specific set of classes
to derive from specific base classes, but that does not allow unrestricted
subclassing.

See “Define a Sealed Hierarchy of Classes” on page 10-22 for more about
this technique.

10-20

Controlling Allowed Subclasses

Specify Allowed Subclasses

Note Specify attribute values explicitly, not as values returned from
functions or other MATLAB expressions.

Specify a list of one or more allowed subclasses in the classdef statement by
assigning meta.class objects to the AllowedSubclasses attribute. Create
the meta.class object referencing a specific class using the ? operator and
the class name:

classdef (AllowedSubclasses = ?ClassName) MySuperClass
...

end

Use a cell array of meta.class objects to define more than one allowed
subclass:

classdef (AllowedSubclasses =
{?ClassName1,?ClassName2,...?ClassNameN}) MySuperClass

...
end

Always use the fully qualified class name when referencing the class name:

classdef (AllowedSubclasses = ?Package.SubPackage.ClassName1)
MySuperClass

...
end

Assigning an empty cell array to the AllowedSubclasses attribute is
effectively the same as defining a Sealed class.

classdef (AllowedSubclasses = {}) MySuperClass
...

end

10-21

10 Building on Other Classes

Note Use only the ? operator and the class name to generate meta.class
objects. Values assigned to the AllowedSubclasses attribute cannot contain
any other MATLAB expressions, including functions that return either
meta.class objects or cell arrays of meta.class objects.

Effect of Defining a Class as an Allowed Subclass
Including a class in the list of AllowedSubclasses does not define that class
as a subclass or require you to define the class as a subclass. It just allows the
referenced class to be defined as a subclass.

Declaring a class as an allowed subclass does not affect whether this class
can itself be subclassed.

A class definition can contain assignments to the AllowedSubclasses
attribute that reference classes that are not currently defined or available
on the MATLAB path. However, any referenced subclass that MATLAB
cannot find when loading the class is effectively removed from the list without
causing an error or warning.

Note If MATLAB does not find any of the classes in the allowed classes list,
the class is effectively Sealed. This is equivalent to AllowedSubclasses
= {}.

Define a Sealed Hierarchy of Classes
The AllowedSubclasses attribute enables you to define a sealed class
hierarchy by sealing the allowed subclasses:

classdef (AllowedSubclasses = {?SubClass1,?SubClass2}) SuperClass
...

end

Define the allowed subclasses as Sealed:

classdef (Sealed) SubClass1
...

10-22

Controlling Allowed Subclasses

end

classdef (Sealed) SubClass2
...

end

Sealed class hierarchies enable you to use the level of abstraction that your
design requires while maintaining a closed systems of classes.

See “Supporting Both Handle and Value Subclasses” on page 10-34 for related
information.

10-23

10 Building on Other Classes

Controlling Access to Class Members

In this section...

“Basic Knowledge” on page 10-24

“Applications for Access Control Lists” on page 10-25

“Specify Access to Class Members” on page 10-26

“Properties with Access Lists” on page 10-29

“Methods with Access Lists” on page 10-29

“Abstract Methods with Access Lists” on page 10-33

Basic Knowledge
The material presented in this section builds on an understanding of the
following information:

Related Topics

• “Class Metadata” on page 14-2

• “Specifying Attributes” on page 3-23

Terminology and Concepts

• Class members— Properties, methods, and events defined by a class

• Defining class — The class defining the class member for which access is
being specified

• Get access— Permission to read the value of a property; controlled by the
property GetAccess attribute

• Set access — Permission to assign a value to a property; controlled by the
property SetAccess attribute

• Method access – Determines what other methods and functions can call the
class method; controlled by the method Access attribute

• Listen access — Permission to define listeners; controlled by the event
ListenAccess attribute

10-24

Controlling Access to Class Members

• Notify access — Permission to trigger events; controlled by the event
NotifyAccess attribute

Possible Values for Access to Class Members

The following class member attributes can contain a list of classes:

• Properties — Access, GetAccess, and SetAccess. See “Property
Attributes” on page 6-8 for a list of all property attributes.

• Methods — Access. See “Method Attributes” on page 7-5 for a list of all
method attributes.

• Events — ListenAccess and NotifyAccess. See “Event Attributes” on
page 9-16 for a list of all event attributes.

These attributes accept the following possible values:

• public — Unrestricted access

• protected— Access by defining class and its subclasses

• private — Access by defining class only

• Access list — A list of one or more classes. Only the defining class and the
classes in the list have access to the class members to which the attribute
applies. If you specify a list of classes, MATLAB does not allow access by
any other class (that is, access is private, except for the listed classes).

Applications for Access Control Lists
Access control lists enable you to control access to specific class properties,
methods, and events, by specifying a list of classes to which you want to grant
access to these class members.

This technique provides greater flexibility and control in the design of a
system of classes. For example, use access control lists when you want to
define parts of your class system in separate classes, but do not want to allow
access to class members from outside the class system.

10-25

10 Building on Other Classes

Specify Access to Class Members
Specify the classes that are allowed to access a particular class member in the
member access attribute statement. For example:

methods (Access = {?ClassName1,?ClassName2,...})

Use the class meta.class object to refer to classes in the access list. To specify
more than one class, use a cell array of meta.class objects. Use the package
name when referring to classes that are in packages.

Note You must specify the meta.class objects explicitly (created with the ?
operator), not as values returned by functions or other MATLAB expressions.

Property Access

The following class declares access lists for the property GetAccess and
Access attributes:

classdef PropertyAccess

properties (GetAccess = {?ClassA, ?ClassB}, SetAccess = private)

Prop1

end

properties (Access = ?ClassC)

Prop2

end

end

The class PropertyAccess specifies the following property access:

• Gives the classes ClassA and ClassB get access to the Prop1 property.

• Gives all subclasses of ClassA and ClassB get access to the Prop1 property.

• Does not give get access to Prop1 from subclasses of PropertyAccess.

• Defines private set access for the Prop1 property.

• Gives set and get access to Prop2 for ClassC and its subclasses.

10-26

Controlling Access to Class Members

Method Access

The following class declares an access list for the method Access attribute:

classdef MethodAccess
methods (Access = {?ClassA, ?ClassB, ?MethodAccess})

function listMethod(obj)
...
end

end
end

The MethodAccess class specifies the following method access:

• Access to listMethod from an instance of MethodAccess by methods of the
classes ClassA and ClassB.

• Access to listMethod from an instance of MethodAccess by methods of
subclasses of MethodAccess, because of the inclusion of MethodAccess
in the access list.

• Subclasses of ClassA and ClassB are allowed to define a method named
listMethod, and MethodAccess is allowed to redefine listMethod.
However, if MethodAccess was not in the access list, its subclasses could
not redefine listMethod.

Event Access

The following class declares an access list for the event ListenAccess
attribute:

classdef EventAccess
events (NotifyAccess = private, ListenAccess = {?ClassA, ?ClassB})

Event1
Event2

end
end

The class EventAccess specifies the following event access:

• Limits notify access for Event1 and Event2 to EventAccess; only methods
of the EventAccess can trigger these events.

10-27

10 Building on Other Classes

• Gives listen access for Event1 and Event2 to methods of ClassA and
ClassB. Methods of EventAccess, ClassA, and ClassB can define listeners
for these events. Subclasses of MyClass cannot define listeners for these
events. See “Methods with Access Lists” on page 10-29.

How MATLAB Interprets Attribute Values

• Granting access to a list of classes restricts access to only:

- The defining class

- The classes in the list

- Subclasses of the classes in the list

• Including the defining class in the access list gives all subclasses of the
defining class access.

• MATLAB resolves references to classes in the access list only when the
class is loaded. If MATLAB cannot find a class that is included in the
access list, that class is effectively removed from the list.

• An empty access list (that is, an empty cell array) is equivalent to private
access.

Specifying Metaclass Objects
Use only the ? operator and the class name to generate the meta.class
objects. Values assigned to the attributes cannot contain any other MATLAB
expressions, including functions that return allowed attribute values:

• meta.class objects

• Cell arrays of meta.class objects

• The values public, protected, or private

You must specify these values explicitly, as shown in the example code in
this section.

10-28

Controlling Access to Class Members

Properties with Access Lists
These sample classes show the behavior of a property that grants read
access (GetAccess) to a class. The GrantAccess class gives GetAccess to the
NeedAccess class for the Prop1 property:

classdef GrantAccess
properties (GetAccess = ?NeedAccess)

Prop1 = 7;
end

end

The NeedAccess class defines a method that uses the value of the
GrantAccess Prop1 value. The dispObj is defined as a Static method,
however, it could be an ordinary method.

classdef NeedAccess
methods (Static)

function dispObj(GrantAccessObj)
% Display the value of Prop1
disp(['Prop1 is: ',num2str(GrantAccessObj.Prop1)])

end
end

end

Get access to Prop1 is private so MATLAB returns an error:

>> a = GrantAccess;
>> a.Prop1
Getting the 'Prop1' property of the 'GrantAccess' class is not allowed.

However, MATLAB allows access to Prop1 by the NeedAccess class:

>> NeedAccess.dispObj(a)
Prop1 is: 7

Methods with Access Lists
Classes granted access to a method can:

• Call the method using an instance of the defining class.

• Define their own method with the same name (if not a subclass).

10-29

10 Building on Other Classes

• Override the method in a subclass only if the superclass defining the
method includes itself or the subclass in the access list.

These sample classes show the behavior of methods called from methods of
other classes that are in the access list. The class AcListSuper gives the
AcListNonSub class access to itsm1 method:

classdef AcListSuper
methods (Access = {?AcListNonSub})

function obj = m1(obj)
disp ('Method m1 called')

end
end

end

Because AcListNonSub is in the access list of m1, its methods can call m1 using
an instance of AcListSuper:

classdef AcListNonSub
methods

function obj = nonSub1(obj,AcListSuper_Obj)
% Call m1 on AcListSuper class
AcListSuper_Obj.m1;

end
function obj = m1(obj)

% Define a method named m1
disp(['Method m1 defined by ',class(obj)])

end
end

end

Create objects of both classes:

>> a = AcListSuper;
>> b = AcListNonSub;

Call the AcListSuper m1 method using an AcListNonSub method:

>> b.nonSub1(a);
Method m1 called

10-30

Controlling Access to Class Members

Call the AcListNonSub m1 method:

>> b.m1;
Method m1 defined by AcListNonSub

Subclasses Without Access
Including the defining class in the access list for a method grants access to
all subclasses derived from that class. When you derive from a class that
has a method with an access list and that list does not include the defining
class in the access list:

• Subclass methods cannot call the superclass method because it is effectively
private.

• Subclasses cannot override the superclass method.

• Subclass methods can call the superclass method indirectly using an
instance of a class that is in the access list.

• Nonsubclass methods of classes in the superclass method access list can
call the superclass method using an instance of a subclass that is not in
the superclass method access list.

For example, AcListSub is a subclass of AcListSuper. The AcListSuper
class defines an access list for method m1. However, this list does not include
AcListSuper, which would implicitly include all subclasses of AcListSuper
in the access list:

classdef AcListSub < AcListSuper

methods

function obj = sub1(obj,AcListSuper_Obj)

% Access m1 via superclass object (NOT ALLOWED)

AcListSuper_Obj.m1;

end

function obj = sub2(obj,AcListNonSub_Obj,AcListSuper_obj)

% Access m1 via object that is in access list (is allowed)

AcListNonSub_Obj.nonSub1(AcListSuper_Obj);

end

end

end

10-31

10 Building on Other Classes

Attempting to call the superclass m1 method results in an error because
subclasses are not in the access list for the method:

>> a = AcListSuper;
>> b = AcListNonSub;
>> c = AcListSub;
>> c.sub1(a);
Error using AcListSuper/m1
Cannot access method 'm1' in class 'AcListSuper'.

Error in AcListSub/sub1 (line 4)
AcListSuper_Obj.m1;

The AcListSub sub2 method can call a method of a class that is on the access
list for m1, and that method (nonSub1) does have access to the superclass m1
method:

>> c.sub2(b,a);
Method m1 called

When subclasses are not included in the access list for a method, those
subclasses cannot define a method with the same name. This behavior is
not the same as cases in which the method’s Access is explicitly declared
as private.

For example, adding the following method to the AcListSub class definition
produces an error when you attempt to instantiate the class.

methods (Access = {?AcListNonSub})
function obj = m1(obj)

disp('AcListSub m1 method')
end

end

If you attempt to instantiate the class, MATLAB returns an error:

>> c = AcListSub;

Error using AcListSub

Class 'AcListSub' is not allowed to override the method 'm1' because neither it nor its

superclasses have been granted access to the method by class 'AcListSuper'.

10-32

Controlling Access to Class Members

The AcListNonSub class, which is in the m1 method access list, can define a
method that calls the m1 method using an instance of the AcListSub class.
While AcListSub is not in the access list for method m1, it is a subclass of
AcListSuper.

For example, add the following method to the AcListNonSub class:

methods
function obj = nonSub2(obj,AcListSub_Obj)

disp('Call m1 via subclass object:')
AcListSub_Obj.m1;

end
end

Calling the nonSub2 method results in execution of the superclass m1 method:

>> b = AcListNonSub;
>> c = AcListSub;
>> b.nonSub2(c);
Call m1 via subclass object:
Method m1 called

This is consistent with the behavior of any subclass object, which can be
substituted for an instance of its superclass.

Abstract Methods with Access Lists
A class containing a method declared as Abstract is an abstract class. It is
the responsibility of subclasses to implement the abstract method using the
function signature declared in the class definition.

When an abstract method has an access list, only the classes in the access list
can implement the method. A subclass that is not in the access list cannot
implement the abstract method so that subclass is itself abstract.

10-33

10 Building on Other Classes

Supporting Both Handle and Value Subclasses

In this section...

“Basic Knowledge” on page 10-34

“Handle Compatibility Rules” on page 10-34

“Defining Handle-Compatible Classes” on page 10-35

“Subclassing Handle-Compatible Classes” on page 10-38

“Methods for Handle Compatible Classes” on page 10-40

“Handle-Compatible Classes and Heterogeneous Arrays” on page 10-41

Basic Knowledge
The material presented in this section builds on knowledge of the following
information.

• “Creating Subclasses — Syntax and Techniques” on page 10-7

• “Subclassing Multiple Classes” on page 10-18

• “Comparing Handle and Value Classes” on page 5-2

Key Concepts
Handle-compatible class is a class that you can combine with handle classes
when defining a set of superclasses.

• All handle classes are handle-compatible.

• All superclasses of handle-compatible classes must also be handle
compatible.

HandleCompatible — the class attribute that defines nonhandle classes as
handle compatible.

Handle Compatibility Rules
Handle-compatible classes (that is, classes whose HandleCompatible
attribute is set to true) follow these rules:

10-34

Supporting Both Handle and Value Subclasses

• All superclasses of a handle-compatible class must also be handle
compatible

• If a class explicitly sets its HandleCompatibility attribute to false, then
none of the class’s superclasses can be handle classes.

• If a class does not explicitly set its HandleCompatible attribute and, if any
superclass is a handle, then all superclasses must be handle compatible.

• The HandleCompatible attribute is not inherited.

A class that does not explicitly set its HandleCompatible attribute to true is:

• A handle class if any of its superclasses are handle classes

• A value class if none of the superclasses are handle classes

Defining Handle-Compatible Classes
A class is handle compatible if:

• It is a handle class

• Its HandleCompatible attribute is set to true

The HandleCompatible class attribute identifies classes that you can combine
with handle classes when specifying a set of superclasses.

Handle compatibility provides greater flexibility when defining abstract
superclasses, such as mixin and interface classes, in cases where the
superclass is designed to support both handle and value subclasses. Handle
compatibility removes the need to define both a handle version and a
nonhandle version of a class.

A Handle Compatible Class
For example, consider a class named Utility that defines functionality that
is useful to both handle and value subclasses. In this example, the Utility
class defines a method to reset property values to the default values defined
in the respective class definition:

classdef (HandleCompatible) Utility
methods

10-35

http://en.wikipedia.org/wiki/Mixin

10 Building on Other Classes

function obj = resetDefaults(obj)
% Reset properties to default and return object
mc = metaclass(obj); % Get meta.class object
mp = mc.PropertyList; % Get meta.property objects
for k=1:length(mp)

% For each property, if there is a default defined,
% set the property to that value

if mp(k).HasDefault && ~strcmp(mp(k).SetAccess,'private')
obj.(mp(k).Name) = mp(k).DefaultValue;

end
end

end
end

end

The Utility class is handle compatible. Therefore, you can use it in the
derivation of classes that are either handle classes or value classes. See
“Getting Information About Classes and Objects” for information on using
meta-data classes.

Return Modified Objects
The resetDefaults method defined by the Utility class returns the object it
modifies, which is necessary when you call resetDefaults with a nonhandle
object. It is important to implement methods that work with both handle and
value objects in a handle compatible superclass. See “Modifying Objects” on
page 3-51 for more information on modifying handle and value objects.

Consider the behavior of a value class that subclasses the Utility class. The
PropertyDefaults class defines three properties, all of which have default
values:

classdef PropertyDefaults < Utility
properties

p1 = datestr(rem(now,1)); % Current time
p2 = 'red'; % Character string
p3 = pi/2; % Result of division operation

end
end

10-36

Supporting Both Handle and Value Subclasses

Create a PropertyDefaults object. MATLAB evaluates the expressions
assigned as default property values when the class is first loaded, and uses
these same default values whenever you create an instance of this class in
the current MATLAB session.

pd = PropertyDefaults

Properties:
p1: ' 4:54 PM'
p2: 'red'
p3: 1.5708

Assign new values that are different from the default values:

pd.p1 = datestr(rem(now,1));
pd.p2 = 'green';
pd.p3 = pi/4;

All pd object property values now contain values that are different from the
default values originally defined by the class:

pd =

PropertyDefaults

Properties:
p1: ' 5:36 PM'
p2: 'green'
p3: 0.7854

Call the resetDefaults method, which is inherited from the Utility class.
Because the PropertyDefaults class is not a handle class, you must return
the modified object for reassignment in the calling function’s workspace.

pd = pd.resetDefaults
pd =

PropertyDefaults

Properties:
p1: ' 4:54 PM'

10-37

10 Building on Other Classes

p2: 'red'
p3: 1.5708

If the PropertyDefaults class was a handle class, then you would not need to
save the object returned by the resetDefaults method. However, to design a
handle compatible class like Utility, you need to ensure that all methods
work with both kinds of classes.

Subclassing Handle-Compatible Classes
According to the rules described in “Handle Compatibility Rules” on page
10-34, when you combine a handle superclass with a handle-compatible
superclass, the result is a handle subclass, which is handle compatible.

However, subclassing a handle-compatible class does not necessarily result
in the subclass being handle compatible. Consider the following two cases,
which demonstrate two possible results.

Combine Nonhandle Utility Class with Handle Classes
Suppose you define a class that subclasses a handle class, as well as the
handle compatible Utility class discussed in “A Handle Compatible Class”
on page 10-35. The HPropertyDefaults class has these characteristics:

• It is a handle class (it derives from handle).

• All of its superclasses are handle compatible (handle classes are handle
compatible by definition).

classdef HPropertyDefaults < handle & Utility
properties

GraphPrim = line;
Width = 1.5;
Color = 'black';

end
end

The HPropertyDefaults class is handle compatible:

hpd = HPropertyDefaults;

10-38

Supporting Both Handle and Value Subclasses

mc = metaclass(hpd);
mc.HandleCompatible
ans =

1

Nonhandle Subclasses of a Handle-Compatible Class
If you subclass a value class that is not handle compatible in combination
with a handle compatible class, the subclass is a nonhandle compatible value
class. The ValueSub class:

• Is a value class (It does not derive from handle.)

• One of its superclasses is handle compatible (the Utility class).

classdef ValueSub < MException & Utility
% ValueSub class is-a value class that is not
% itself a handle-compatibile class
methods

function obj = ValueSub(str1,str2)
obj = obj@MException(str1,str2);

end
end

end

The ValueSub class is a nonhandle-compatible value class because the
MException class does not define the HandleCompatible attribute as true:

hv = ValueSub('MATLAB:narginchk:notEnoughInputs',...
'Not enough input arguments.');

mc = metaclass(hv);
mc.HandleCompatible

ans =

0

10-39

10 Building on Other Classes

Methods for Handle Compatible Classes
Objects passed to methods of handle compatible classes can be either
handle or value objects. There are two different behaviors to consider when
implementing methods for a class that operate on both handles and values:

• If an input object is a handle object, then the method can alter the handle
object and these changes are visible to all workspaces that have the same
handle.

• If an input object is a value object, then changes to the object made inside
the method affect only the value inside the method workspace.

Handle compatible methods generally do not alter input objects because the
effect of such changes are not the same for handle and nonhandle objects.

See “Modifying Objects” on page 3-51 for information about modifying handle
and value objects.

Identifying Handle Objects
Use the isa function to determine if an object is a handle object:

isa(obj,'handle')

Modifying Value Objects in Methods
If a method operates on both handle and value objects, the method must
return the modified object. For example, the TimeStamp property returns
the object it modifies:

classdef (HandleCompatible) Util
% Utility class that adds a time stamp
properties

TimeStamp
end
methods

function obj = setTime(obj)
% Return object after modification
obj.TimeStamp = now;

end
end

10-40

Supporting Both Handle and Value Subclasses

end

Handle-Compatible Classes and Heterogeneous
Arrays
A heterogeneous array contains objects of different classes. Members of a
heterogeneous array have a common superclass, but might belong to different
subclasses. See the matlab.mixin.Heterogeneous class for more information
on heterogeneous arrays. The matlab.mixin.Heterogeneous class is a
handle-compatible class.

Methods Must Be Sealed
You can invoke only those methods that are sealed by the common superclass
on heterogeneous arrays (Sealed attribute set to true). Sealed methods
prevent subclasses from overriding those methods and guarantee that
methods called on heterogeneous arrays have the same definition for the
entire array.

Subclasses cannot override sealed methods. In situations requiring subclasses
to specialize methods defined by a utility class, you can employ the design
pattern referred to as the template method.

Using the Template Technique
Suppose you need to implement a handle compatible class that is intended to
work with heterogeneous arrays. The following approach enables you to seal
public methods, while providing a way for each subclass to specialize how the
method works on each subclass instance:

• In the handle compatible class:

- Define a sealed method that accepts a heterogeneous array as input.

- Define a protected, abstract method that each subclass must implement.

- Within the sealed method, call the overridden method for each array
element.

• Each subclass in the heterogeneous hierarchy implements a concrete
version of the abstract method, which provides specialized behavior
required by the particular subclass.

10-41

10 Building on Other Classes

The Printable class shows how to implement a template method approach:

classdef (HandleCompatible) Printable
methods(Sealed)

function print(aryIn)
% Print elements of a potentially
% heterogeneous array
n = numel(aryIn);
for k=1:n

% Call subclass concrete implementation
printElement(aryIn(k));

end
end

end
methods(Access=protected, Abstract)

% Define protected, abstract method
% Each subclass implements a concrete version
printElement(objIn)

end
end

10-42

Subclassing MATLAB® Built-In Types

Subclassing MATLAB Built-In Types

In this section...

“MATLAB Built-In Types” on page 10-43

“Why Subclass Built-In Types” on page 10-44

“Behavior of Built-In Functions with Subclass Objects” on page 10-45

“A Class to Manage uint8 Data” on page 10-52

“Subclasses of Built-In Types with Properties” on page 10-59

“Understanding size and numel” on page 10-65

“A Class to Represent Hardware” on page 10-70

MATLAB Built-In Types
Built-in types represent fundamental kinds of data such as numeric arrays,
logical arrays, and character arrays. Other built-in types contain data
belonging to these fundamental types and other classes. For example, cell
and struct arrays can contain instances of any class.

Built-in types define methods that perform operations on objects of these
classes. For example, you can perform operations on numeric arrays, such as,
sorting, rounding values, and element-wise and matrix multiplication. You
can create an object of class double using an assignment statement, indexing
expressions, or using converter functions.

See “Fundamental MATLAB Classes” for more information on MATLAB
built-in classes.

Note It is an error to define a class that has the same name as a built-in class.

MATLAB Built-In Types
This table lists the built-in types defined by MATLAB.

10-43

10 Building on Other Classes

Why Subclass Built-In Types
Subclass a built-in type to extend the operations that you can perform on a
particular class of data. For example, when you want to:

• Define unique operations to perform on class data.

• Be able to use methods of the built-in class and other built-in functions
directly with objects of the subclass. For example, you do not need to
reimplement all the mathematical operators if you derived from a class
that defines these operators.

See “Built-In Types You Cannot Subclass” on page 10-44 for a list of which
MATLAB built-in classes you can subclass.

Which Functions Work With Subclasses of Built-In Types
Consider a class that defines enumerations. It can derive from an integer
class and inherit methods that enable you to compare and sort values. For
example, integer classes like int32 support all the relational methods (eq,
ge, gt, le, lt, ne).

To see a list of functions that the subclass has inherited as methods, use
the methods function:

methods('SubclassName')

Generally, you can use an object of the subclass with any of the inherited
methods and any functions coded in MATLAB that normally accept input
arguments of the same class as the superclass.

See “Behavior of Built-In Functions with Subclass Objects” on page 10-45 for
information on other required methods.

Built-In Types You Cannot Subclass
You cannot subclass the following built-in MATLAB classes:

• char

• cell

• struct

10-44

Subclassing MATLAB® Built-In Types

• function_handle

Classes that Subclass of Built-In Types
“A Class to Manage uint8 Data” on page 10-52

“Subclasses of Built-In Types with Properties” on page 10-59

“A Class to Represent Hardware” on page 10-70

Behavior of Built-In Functions with Subclass Objects
When you define a subclass of a built-in class, the subclass inherits all built-in
class methods. In addition, MATLAB provide a number of built-in functions
as subclass methods. However, built-in functions that work on built-in classes
behave differently with subclasses, depending on which function you are
using and whether your subclass defines properties.

Behavior Categories
When you call an inherited method on a subclass of a built-in class, the result
of that call depends on the nature of the operation performed by the method.
The behaviors of these methods fit into several categories.

• Operations on data values return objects of the superclass. For example,
if you subclass double and perform addition on two subclass objects,
MATLAB adds the numeric values and returns a value of class double.

• Operations on the orientation or structure of the data return objects of the
subclass. Methods that perform these kinds of operations include, reshape,
permute, transpose, and so on.

• Converting a subclass object to a built-in class returns an object of the
specified class. Functions such as uint32, double, char, and so on, work
with subclass objects the same as they work with superclass objects.

• Comparing objects or testing for inclusion in a specific set returns logical
or built-in objects, depending on the function. Functions such as isequal,
ischar, isobject, and so on.

• Indexing expressions return objects of the subclass. If the subclass defines
properties, then default indexing no longer works and the subclass must

10-45

10 Building on Other Classes

define its own indexing methods. See “Subclasses That Define Properties”
on page 10-46 for more information.

• Concatenation returns an object of the subclass. If the subclass defines
properties, then default concatenation no longer works and the subclass
must define its own concatenation methods. See “Subclasses That Define
Properties” on page 10-46 for more information.

To list the built-in functions that work with a subclass of a built-in class, use
the methods function.

Subclasses That Define Properties
When a subclass of a built-in class defines properties, MATLAB no longer
provides support for indexing and concatenation operations. MATLAB cannot
use the built-in functions normally called for these operations because
subclass properties can contain any data. The subclass must define what
indexing and concatenation mean for a class with properties. If your subclass
needs indexing and concatenation functionality, then the subclass must
implement the appropriate methods.

The sections that follow list the methods you must implement in the subclass
to support indexing and concatenation. Also, the section “Subclasses of
Built-In Types with Properties” on page 10-59 provides an example of these
methods.

Methods for Concatenation. To support concatenation, the subclass must
implement the following methods:

• horzcat— Implement horizontal concatenation of objects

• vertcat— Implement vertical concatenation of objects

• cat— Implement concatenation of object arrays along specified dimension

“Concatenation Functions” on page 10-50

Methods for Indexing. To support indexing operations, the subclass must
implement these methods:

• subsasgn— Implement dot notation and indexed assignments

10-46

Subclassing MATLAB® Built-In Types

• subsref— Implement dot notation and indexed references

• subsindex — Implement object as index value

“Indexing Methods” on page 10-50

More information on Built-In Methods
The following sections describe how different categories of methods behave
with subclasses:

• “Extending the Operations of a Built-In Class” on page 10-47

• “Built-In Methods That Operate on Data Values” on page 10-49

“Built-In Methods That Operate on Data Organization” on page 10-49

Extending the Operations of a Built-In Class
The MATLAB built-in class double defines a wide range of methods to
perform arithmetic operations, indexing, matrix operation, and so on.
Therefore, subclassing double enables you to add specific features without
implementing many of the methods that a numeric class requires to function
effectively in the MATLAB language.

The following class definition subclasses the built-in class double.

classdef DocSimpleDouble < double
methods

function obj = DocSimpleDouble(data)
if nargin == 0

data = 0;
end
obj = obj@double(data); % initialize the base class portion

end
end

end

You can create an instance of the class DocSimpleDouble and call any
methods of the double class.

sc = DocSimpleDouble(1:10);
sc =

10-47

10 Building on Other Classes

DocSimpleDouble
double data:

1 2 3 4 5 6 7 8 9 10
Methods, Superclasses

Calling a method inherited from class double that operates on the data,
like sum, returns a double and, therefore, uses the display method of class
double:

sum(sc)
ans =

55

You can index sc like an array of doubles. The returned value is the class
of the subclass, not double:

a = sc(2:4)
a =

DocSimpleDouble
double data:

2 3 4
Methods, Superclasses

Indexed assignment also works:

sc(1:5) = 5:-1:1
sc =

DocSimpleDouble
double data:

5 4 3 2 1 6 7 8 9 10
Methods, Superclasses

Calling a method that modifies the order of the data elements operates on the
data, but returns an object of the subclass:

sc = DocSimpleDouble(1:10);
sc(1:5) = 5:-1:1;
a = sort(sc)
a =

DocSimpleDouble
double data:

10-48

Subclassing MATLAB® Built-In Types

1 2 3 4 5 6 7 8 9 10
Methods, Superclasses

Extending the Subclass. You can extend the DocSimpleDouble with
specialized methods to provide custom behavior. For example, see “A Class to
Manage uint8 Data” on page 10-52.

Built-In Methods That Operate on Data Values
Most built-in functions used with built-in classes are actually methods of
the built-in class. For example, the double and single classes both have a
sin method. All of these built-in class methods work with subclasses of the
built-in class.

When you call a built-in method on a subclass object, MATLAB uses the
superclass part of the subclass object as inputs to the method, and the value
returned is same class as the built-in class. For example:

sc = DocSimpleDouble(1:10);
a = sin(sc)
class(a)

ans =

double

Built-In Methods That Operate on Data Organization
This group of built-in methods reorders or reshapes the input argument
array. These methods operate on the superclass part of the subclass object,
but return an object of the same type as the subclass. Methods in this group
include:

• reshape

• permute

• sort

• transpose

• ctranspose

10-49

10 Building on Other Classes

Indexing Methods
Built-in classes use specially implemented versions of the subsref, subsasgn,
and subsindex methods to implement indexing (subscripted reference and
assignment). When you index a subclass object, only the built-in data is
referenced (not the properties defined by your subclass). For example,
indexing element 2 in the DocSimpleDouble subclass object returns the
second element in the vector:

sc = DocSimpleDouble(1:10);
a = sc(2)
a =

DocSimpleDouble
double data:

2
Methods, Superclasses

The value returned from an indexing operation is an object of the subclass.
You cannot make subscripted references if your subclass defines properties
unless your subclass overrides the default subsref method.

Assigning a new value to the second element in the DocSimpleDouble object
operates only on the superclass data:

sc(2) = 12
sc =

DocSimpleDouble
double data:

1 12 3 4 5 6 7 8 9 10
Methods, Superclasses

The subsref method also implements dot notation for methods. See
“Subclasses of Built-In Types with Properties” on page 10-59 for an example
of a subsref method.

Concatenation Functions
Built-in classes use the functions horzcat, vertcat, and cat to implement
concatenation. When you use these functions with subclass objects of the
same type, MATLAB concatenates the superclass data to form a new object.
For example, you can concatenate objects of the DocSimpleDouble class:

10-50

Subclassing MATLAB® Built-In Types

sc1 = DocSimpleDouble(1:10);

sc2 = DocSimpleDouble(11:20);

[sc1 sc2]

ans =

DocSimpleDouble

double data:

Columns 1 through 13

1 2 3 4 5 6 7 8 9 10 11 12 13

Columns 14 through 20

14 15 16 17 18 19 20

Methods, Superclasses

[sc1; sc2]

ans =

DocSimpleDouble

double data:

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

Methods, Superclasses

Concatenate two objects along a third dimension:

c = cat(3,sc1,sc2)
c = cat(3,sc1,sc2)
c =

DocSimpleDouble
double data:

(:,:,1) =
1 2 3 4 5 6 7 8 9 10

(:,:,2) =
11 12 13 14 15 16 17 18 19 20

Methods, Superclasses

If the subclass of built-in class defines properties, you cannot concatenate
objects of the subclass. Such an operation does not make sense because
there is no way to know how to combine properties of different objects.
However, your subclass can define custom horzcat and vertcat methods to
support concatenation in whatever way makes sense for your subclass. See
“Concatenating DocExtendDouble Objects” on page 10-64 for an example.

10-51

10 Building on Other Classes

A Class to Manage uint8 Data
This example shows a class derived from the built-in uint8 class. This class
simplifies the process of maintaining a collection of intensity image data
defined by uint8 values. The basic operations of the class include:

• Capability to convert various classes of image data to uint8 to reduce
object data storage.

• A method to display the intensity images contained in the subclass objects.

• Ability to use all the methods that you can use on uint8 data (for example,
size, indexing (reference and assignment), reshape, bitshift, cat, fft,
arithmetic operators, and so on).

The class data are matrices of intensity image data stored in the superclass
part of the subclass object. This approach requires no properties.

The DocUint8 class stores the image data, which converts the data, if
necessary:

classdef DocUint8 < uint8
methods

function obj = DocUint8(data)
% Support no argument case

if nargin == 0
data = uint8(0);

% If image data is not uint8, convert to uint8
elseif ~strcmp('uint8',class(data))

switch class(data)
case 'uint16'

t = double(data)/65535;
data = uint8(round(t*255));

case 'double'
data = uint8(round(data*255));

otherwise
error('Not a supported image class')

end
end
% assign data to superclass part of object
obj = obj@uint8(data);

end

10-52

Subclassing MATLAB® Built-In Types

% Get uint8 data and setup call to imagesc
function h = showImage(obj)

data = uint8(obj);
figure; colormap(gray(256))
h = imagesc(data,[0 255]);
axis image
brighten(.2)

end
end

end

Using the DocUint8 Class
The DocUint8 class contains its own conversion code and provides a method
to display all images stored as DocUint8 objects in a consistent way. For
example:

cir = imread('circuit.tif');
img1 = DocUint8(cir);
img1.showImage;

10-53

10 Building on Other Classes

50 100 150 200 250

50

100

150

200

250

Because DocUint8 subclasses uint8, you can use any of its methods. For
example,

size(img1)
ans =

280 272

returns the size of the image data.

Indexing Operations
Inherited methods perform indexing operations, but return objects of the
same class as the subclass.

10-54

Subclassing MATLAB® Built-In Types

Therefore, you can index into the image data and call a subclass method:

showImage(img1(100:200,1:160));

Subscripted reference operations (controlled by the inherited subsref
method) return a DocUint8 object.

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

You can assign values to indexed elements:

img1(100:120,140:160) = 255;
img1.showImage;

10-55

10 Building on Other Classes

Subscripted assignment operations (controlled by the inherited subsasgn
method) return a DocUint8 object.

50 100 150 200 250

50

100

150

200

250

Concatenation Operations
Concatenation operations work on DocUint8 objects because this class inherits
the uint8 horzcat and vertcat methods, which return a DocUint8 object:

showImage([img1 img1]);

10-56

Subclassing MATLAB® Built-In Types

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

Data Operations
Methods that operate on data values, such as arithmetic operators, always
return an object of the built-in type (not of the subclass type). For example,
multiplying DocUint8 objects returns a uint8 object:

showImage(img1.*.8);
??? Undefined function or method 'showImage' for input
arguments of type 'uint8'.

If you must be able to perform operations of this type, implement a subclass
method to override the inherited method. The times method implements

10-57

10 Building on Other Classes

array (element-by-element) multiplication. See “Implementing Operators for
Your Class” on page 15-35 for a list of operator method names.

For example:

function o = times(obj,val)
u8 = uint8(obj).*val; % Call uint8 times method
o = DocUint8(u8);

end

Keep in mind that when you override a uint8 method, MATLAB calls
the subclass method and no longer dispatches to the base class method.
Therefore, explicitly call the uint8 times method or an infinite recursion can
occur. Make the explicit call in this statement of the DocUint8 times method:

u8 = uint8(obj).*val;

After adding the times method to DocUint8, you can use the showImage
method in expressions like:

showImage(img1.*1.8);

10-58

Subclassing MATLAB® Built-In Types

50 100 150 200 250

50

100

150

200

250

Subclasses of Built-In Types with Properties
When your subclass defines properties, indexing and concatenation do not
work by default. There is really no way for the default subsref, horzcat, and
vertcat methods to work with unknown property types and values. The
following example subclasses the double class and defines a single property
intended to contain a descriptive character string.

Methods Implemented
The following methods modify the behavior of the DocExtendDouble class:

10-59

10 Building on Other Classes

• DocExtendDouble— The constructor supports a no argument syntax that
initializes properties to empty values.

• subsref— Enables subscripted reference to the superclass part (double)
of the subclass, dot notation reference to the DataString property, and dot
notation reference the built-in data via the string Data (the double data
property is hidden).

• horzcat— Defines horizontal concatenation of DocExtendDouble objects
as the concatenation of the superclass part using the double class horzcat
method and forms a cell array of the string properties.

• vertcat — The vertical concatenation equivalent of hortzcat (both are
required).

• char — A DocExtendDouble to char converter used by horzcat and
vertcat.

• disp— DocExtendDouble implements a disp method to provide a custom
display for the object.

Property Added
The DocExtendDouble class defines the DataString property to contain text
that describes the data contained in instances of the DocExtendDouble class.
Keep in mind that the superclass part (double) of the class contains the data.

Subclass with Properties
The DocExtendDouble class extends double and implements methods to
support subscripted reference and concatenation.

classdef DocExtendDouble < double

properties

DataString

end

methods

function obj = DocExtendDouble(data,str)

% Support calling with zero arguments but do not return empty object

if nargin == 0

data = 0;

10-60

Subclassing MATLAB® Built-In Types

str = '';

elseif nargin == 1

str = '';

end

obj = obj@double(data);

obj.DataString = str;

end

function sref = subsref(obj,s)

% Implements dot notation for DataString and Data

% as well as indexed reference

switch s(1).type

case '.'

switch s(1).subs

case 'DataString'

sref = obj.DataString;

case 'Data'

sref = double(obj);

if length(s)>1 && strcmp(s(2).type, '()')

sref = subsref(sref,s(2:end));

end

end

case '()'

sf = double(obj);

if ~isempty(s(1).subs)

sf = subsref(sf,s(1:end));

else

error('Not a supported subscripted reference')

end

sref = DocExtendDouble(sf,obj.DataString);

end

end

function newobj = horzcat(varargin)

% Horizontal concatenation - cellfun calls double

% on all object to get superclass part. cellfun call local char

% to get DataString and the creates new object that combines

% doubles in vector and chars in cell array and creates new object

d1 = cellfun(@double,varargin,'UniformOutput',false);

data = horzcat(d1{:});

10-61

10 Building on Other Classes

str = horzcat(cellfun(@char,varargin,'UniformOutput',false));

newobj = DocExtendDouble(data,str);

end

function newobj = vertcat(varargin)

% Need both horzcat and vertcat

d1 = cellfun(@double,varargin,'UniformOutput',false);

data = vertcat(d1{:});

str = vertcat(cellfun(@char,varargin,'UniformOutput',false));

newobj = DocExtendDouble(data,str);

end

function str = char(obj)

% Used for cat functions to return DataString

str = obj.DataString;

end

function disp(obj)

% Change the default display

disp(obj.DataString)

disp(double(obj))

end

end

end

Create an instance of DocExtendDouble and notice that the display is
different from the default:

ed = DocExtendDouble(1:10,'One to ten')
ed =
One to ten

1 2 3 4 5 6 7 8 9 10

The sum function continues to operate on the superclass part of the object:

sum(ed)
ans =

55

Subscripted reference works because the class implements a subsref method:

10-62

Subclassing MATLAB® Built-In Types

ed(10:-1:1)

ans =

One to ten
10 9 8 7 6 5 4 3 2 1

However, subscripted assignment does not work because the class does not
define a subsasgn method:

ed(1:5) = 5:-1:1
Error using DocExtendDouble/subsasgn
Cannot use '(' or '{' to index into an object of class 'DocExtendDouble' be
'DocExtendDouble' defines properties and subclasses 'double'.
Click here for more information.

The sort function works on the superclass part of the object:

sort(ed)
ans =
One to ten

1 2 3 4 5 6 7 8 9 10

Indexed Reference of a DocExtendDouble Object
Subscripted reference (performed by subsref) requires the subclass to
implement its own subsref method.

ed = DocExtendDouble(1:10,'One to ten');
a = ed(2)
a =
One to ten

2
whos

Name Size Bytes Class Attributes
a 1x1 132 DocExtendDouble
ed 1x10 204 DocExtendDouble

You can access the property data:

c = ed.DataString

10-63

10 Building on Other Classes

c =
One to ten
whos

Name Size Bytes Class
c 1x10 20 char
ed 1x10 204 DocExtendDouble

Concatenating DocExtendDouble Objects
Given the following two objects:

ed1 = DocExtendDouble([1:10],'One to ten');
ed2 = DocExtendDouble([10:-1:1],'Ten to one');

You can concatenate these objects along the horizontal dimension:

hcat = [ed1 ed2]

hcat =

'One to ten' 'Ten to one'

Columns 1 through 13

1 2 3 4 5 6 7 8 9 10 10 9 8

Columns 14 through 20

7 6 5 4 3 2 1

whos

Name Size Bytes Class

ed1 1x10 204 DocExtendDouble

ed2 1x10 204 DocExtendDouble

hcat 1x20 528 DocExtendDouble

Vertical concatenation works in a similar way:

vcat = [ed1;ed2]
vcat =

'One to ten' 'Ten to one'
1 2 3 4 5 6 7 8 9 10

10 9 8 7 6 5 4 3 2 1

Both horzcat and vertcat return a new object of the same class as the
subclass.

10-64

Subclassing MATLAB® Built-In Types

Understanding size and numel
The size function returns the dimensions of an array. The numel function
returns the number of elements in an array.

The default size and numel functions behave consistently with user-defined
classes (see “Classes Not Derived from Built-In Classes” on page 10-67).
Other MATLAB functions use size and numel to perform their operations and
you usually do not need to overload them.

When used with subclasses of built-in classes, the size and numel functions
behave the same as in the superclasses.

Consider the built-in class double:

d = 1:10;
size(d)

ans =

1 10

numel(d)

ans =

10

dsubref = d(7:end);

whos dsub
Name Size Bytes Class Attributes

dsubref 1x4 32 double

The double class defines these behaviors, including parentheses indexing.

10-65

10 Building on Other Classes

Subclass Inherited Behavior
Classes behave like their superclasses, unless the subclass explicitly overrides
any given behavior. For example, DocSimpleDouble subclasses double, but
defines no properties:

classdef DocSimpleDouble < double
methods

function obj = DocSimpleDouble(data)
if nargin == 0

data = 0;
end
obj = obj@double(data);

end
end

end

Create an object and assign to the superclass part of the object the values
1:10:

sd = DocSimpleDouble(1:10);

The size function returns the size of the superclass part:

size(sd)

ans =

1 10

The numel function returns the number of elements in the superclass part:

numel(sd)

ans =

10

Object arrays return the size of the built-in arrays also:

size([sd;sd])

10-66

Subclassing MATLAB® Built-In Types

ans =

2 10

numel([sd;sd])

ans =

20

The DocSimpleDouble class inherits the indexing behavior of the double class:

sdsubref = sd(7:end);
whos sdsubref

Name Size Bytes Class Attributes

sdsubref 1x4 88 DocSimpleDouble

Classes Not Derived from Built-In Classes
Consider a simple value class. It does not inherit the array-like behaviors of
the double class. For example:

classdef VerySimpleClass
properties

Value
end

end

Create an instance of this class and assign a ten-element vector to the Value
property:

vs = VerySimpleClass;
vs.Value = 1:10;
size(vs)

ans =

1 1

numel(vs)

10-67

10 Building on Other Classes

ans =

1

size([vs;vs])

ans =

2 1

numel([vs;vs])

ans =

2

vs is a scalar object, as opposed to an array of VerySimpleClass objects. The
Value property is an array of doubles:

size(vs.Value)

ans =

1 10

Apply indexing expressions to the object property:

vssubref = vs.Value(7:end);
whos vssubref

Name Size Bytes Class Attributes

vssubref 1x4 32 double

vs.Value is an array of class double:

class(vs.Value)

ans =

double

10-68

Subclassing MATLAB® Built-In Types

Creating an array of VerySimpleClass objects

vsArray(1:10) = VerySimpleClass;

MATLAB does not apply scalar expansion to object array property value
assignment. Use the deal function for this purpose:

[vsArray.Value] = deal(1:10);

Indexing rules for object arrays are equivalent to those of struct arrays:

v1 = vsArray(1).Value;
>> whos v1

Name Size Bytes Class Attributes

v1 1x10 80 double

vsArray(1).Value(6)

ans =

6

Changing the Behavior of size
Subclasses of built-in numeric classes inherit a size method, which operates
on the superclass part of the subclass object (this method is hidden). If you
want size to behave in another way, you can override it by defining your
own size method in your subclass.

Keep in mind that other MATLAB functions use the values returned by size.
If you change the way size behaves, ensure that the values returned make
sense for the intended use of your class.

Avoid Overloading numel
It is important to understand the significance of numel with respect to
indexing. MATLAB calls numel to determine the number of elements returned
by an indexed expression like:

A(index1,index2,...,indexn)

10-69

10 Building on Other Classes

Both subsref and subsasgn use numel:

• subsref — numel computes the number of expected outputs (nargout)
returned subsref

• subsasgn— numel computes the number of expected inputs (nargin) that
MATLAB assigns as a result of a call to subsasgn

Subclasses of built-in classes always return scalar objects as a result
of subscripted reference and always use scalar objects for subscripted
assignment. The numel function returns the correct value for these operations
and there is, therefore, no reason to overload numel.

If you define a class in which nargout for subsref or nargin for subsasgn is
different from the value returned by the default numel, then overload numel
for that class to ensure that it returns the correct values.

A Class to Represent Hardware
This example shows the implementation of a class to represent an optical
multiplex card. These cards typically have a number of input ports, which
this class represents by the port data rates and names. There is also an
output port. The output rate of a multiplex card is the sum of the input
port data rates.

The DocMuxCard class defines the output rate as a Dependent property, and
then defines a get access method for this property. The get.OutPutRate
method calculates the actual output rate whenever the OutPutRate property
is queried. See “Property Get Methods” on page 6-18 for more information
on this technique.

Why Derive from int32
The DocMuxCard class derives from the int32 class because 32–bit integers
represent the input port data rates. The DocMuxCard class inherits the
methods of the int32 class, which simplifies the implementation of this
subclass.

10-70

Subclassing MATLAB® Built-In Types

Class Definition
Here is the definition of the DocMuxCard class. Notice that the input port rates
initialize the int32 portion of class.

classdef DocMuxCard < int32

properties

InPutNames % cell array of strings

OutPutName % a string

end

properties (Dependent = true)

OutPutRate

end

methods

function obj = DocMuxCard(inptnames, inptrates, outpname)

obj = obj@int32(inptrates); % initial the int32 class portion

obj.InPutNames = inptnames;

obj.OutPutName = outpname;

end

function x = get.OutPutRate(obj)

x = sum(obj); % calculate the value of the property

end

function x = subsref(card, s)

if strcmp(s(1).type,'.')

base = subsref@int32(card, s(1));

if isscalar(s)

x = base;

else

x = subsref(base, s(2:end));

end

else

x = subsref(int32(card), s);

end

end

end

end

Using the Class with Methods of int32
The constructor takes three arguments:

10-71

10 Building on Other Classes

• inptnames — Cell array of input port names

• inptrates — Vector of input port rates

• outpname — Name for the output port

>> omx = DocMuxCard({'inp1','inp2','inp3','inp4'},[3 12 12 48],'outp')

omx =

DocMuxCard

Properties:

InPutNames: {'inp1' 'inp2' 'inp3' 'inp4'}

OutPutName: 'outp'

OutPutRate: 75

int32 data:

3 12 12 48

Methods, Superclasses

You can treat an DocMuxCard object like an int32. For example, this
statement accesses the int32 data in the object to determine the names of the
input ports that have a rate of 12:

>> omx.InPutNames(omx==12)
ans =

'inp2' 'inp3'

Indexing the DocMuxCard object accesses the int32 vector of input port rates:

>> omx(1:2)
ans =

3 12

The OutPutRate property get access method uses sum to sum the output port
rates:

>> omx.OutPutRate
ans =

75

10-72

Determining the Class of an Array

Determining the Class of an Array

In this section...

“Querying the Class Name” on page 10-73

“Testing for Class” on page 10-73

“Testing for Specific Types” on page 10-74

“Testing for Most Derived Class” on page 10-75

Querying the Class Name
Use the class function to determine the class of an array:

a = [2,5,7,11];
class(a)
ans =
double

str = 'Character string';
class(str)
ans =
char

Testing for Class
The isa function enables you to test for a specific class or a category of
numeric class (numeric, float, integer):

a = [2,5,7,11];
isa(a,'double')
ans =

1

Floating-point values (single and double precision values):

isa(a,'float')
ans =

1

Numeric values (floating-point and integer values):

10-73

10 Building on Other Classes

isa(a,'numeric')
ans =

1

isa Returns True for Subclasses
isa returns true for classes derived from the specified class. For example, the
SubInt class derives from the built-in type int16:

classdef SubInt < int16
methods

function obj = SubInt(data)
if nargin == 0

data = 0;
end
obj = obj@int16(data);

end
end

end

By definition, an instance of the SubInt class is also an instance of the int16
class:

aInt = SubInt;
isa(aInt,'int16')
ans =

1

Using the integer category also returns true:

isa(aInt,'integer')
ans =

1

Testing for Specific Types
The class function returns the name of the most derived class of an object:

class(aInt)
ans =
SubInt

10-74

Determining the Class of an Array

Use the strcmp function with the class function to check for a specific class
of an object:

a = int16(7);
strcmp(class(a),'int16')
ans =

1

Because the class function returns the class name as a character string,
the inheritance of objects does not affect the result of the string comparison
performed by strcmp:

aInt = SubInt;
strcmp(class(aInt),'int16')
ans =

0

Testing for Most Derived Class
If you define functions that require inputs that are:

• MATLAB built-in types

• Not subclasses of MATLAB built-in types

Use the following techniques to exclude subclasses of built-in types from the
input arguments.

• Define a cell array that contain the names of built-in types accepted by
your function.

• Call class and strcmp to test for specific types in a MATLAB control
statement.

Test an input argument:

if strcmp(class(inputArg),'single')
% Call function

else
inputArg = single(inputArg);

end

10-75

10 Building on Other Classes

Testing for a Category of Types
Suppose you create a MEX-function, myMexFcn, that requires two numeric
inputs that must be of type double or single:

outArray = myMexFcn(a,b)

Define a cell array floatTypes contains the strings double and single:

floatTypes = {'double','single'};

% Test for proper types
if any(strcmp(class(a),floatTypes)) && ...

any(strcmp(class(b),floatTypes))
outArray = myMexFcn(a,b);

else
% Try to convert inputs to avoid error
...

end

Another Test for Built-In Types
You can use isobject to separate built-in types from subclasses of built-in
types. The isobject function returns false for instances of built-in types:

% Create a int16 array
a = int16([2,5,7,11]);
isobject(a)
ans =

0

Determine if an array is one of the built-in integer types:

if isa(a,'integer') && ~isobject(a)
% a is a built-in integer type
...

end

10-76

Defining Abstract Classes

Defining Abstract Classes

In this section...

“Abstract Classes” on page 10-77

“Declaring Classes as Abstract” on page 10-78

“Determine If a Class Is Abstract” on page 10-79

“Find Inherited Abstract Properties and Methods” on page 10-80

Abstract Classes
Abstract classes are useful for describing functionality that is common to a
group of classes, but requires unique implementations within each class.

Abstract Class Terminology

abstract class — A class that cannot be instantiated, but that defines class
components used by subclasses.

abstract members— Properties or methods declared in an abstract class, but
implemented in subclasses.

concrete members—Properties or methods that are fully implement by a class.

concrete class — A class that can be instantiated. Concrete classes contain
no abstract members.

interface — An abstract class describing functionality that is common to a
group of classes, but that requires unique implementations within each class.
The abstract class defines the interface of each subclass without specifying
the actual implementation.

An abstract class serves as a basis (that is, a superclass) for a group of related
subclasses. An abstract class can define abstract properties and methods
that subclasses must implement. Each subclass can implement the concrete
properties and methods in a way that supports their specific requirements.

10-77

10 Building on Other Classes

Abstract classes can define properties and methods that are not abstract, and
do not need to define any abstract members. Abstract classes pass on their
concrete members through inheritance.

Implementing a Concrete Subclass
A subclass must implement all inherited abstract properties and methods to
become a concrete class. Otherwise, the subclass is itself an abstract class.

Declaring Classes as Abstract
A class is abstract when it declares:

• An abstract method

• An abstract property

• The Abstract class attribute

A subclass of an abstract class is itself abstract if it does not define concrete
implementations for all inherited abstract methods or properties.

Abstract Methods
Define an abstract method:

methods (Abstract)
abstMethod(obj)

end

For methods that declare the Abstract method attribute:

• Do not use a function...end block to define an abstract method, use only
the method signature.

• Abstract methods have no implementation in the abstract class.

• Concrete subclasses are not required to support the same number of input
and output arguments and do not need to use the same argument names.
However, subclasses generally use the same signature when implementing
their version of the method.

10-78

Defining Abstract Classes

Abstract Properties
Define an abstract property:

properties (Abstract)
AbsProp

end

For properties that declare the Abstract property attribute:

• Concrete subclasses must redefine abstract properties without the
Abstract attribute, and must use the same values for the SetAccess and
GetAccess attributes as those used in the abstract superclass.

• Abstract properties cannot define set or get access methods (see “Property
Access Methods” on page 6-14) and cannot specify initial values. The
subclass that defines the concrete property can create set or get access
methods and specify initial values.

Abstract Class
Declare a class as abstract in the classdef statement:

classdef (Abstract) AbsClass
...

end

For classes that declare the Abstract class attribute:

• Concrete subclasses must redefine any properties or methods that are
declared as abstract.

• The abstract class does not need to define any abstract methods or
properties.

When you define any abstract methods or properties, MATLAB automatically
sets the class Abstract attribute to true.

Determine If a Class Is Abstract
Determine if a class is abstract by querying the Abstract property of its
meta.class object. For example, the AbsClass defines two abstract methods:

10-79

10 Building on Other Classes

classdef AbsClass
methods(Abstract, Static)

result = absMethodOne
output = absMethodTwo

end
end

Use the logical value of the meta.class Abstract property to determine if
the class is abstract:

mc = ?AbsClass;
if ~mc.Abstract

% not an abstract class
end

Display Abstract Member Names
Use the meta.abstractDetails function to display the names of abstract
properties or methods and the names of the defining classes:

meta.abstractDetails('AbsClass');

Abstract methods for class AbsClass:
absMethodTwo % defined in AbsClass
absMethodOne % defined in AbsClass

Find Inherited Abstract Properties and Methods
The meta.abstractDetails function returns the names and defining class of
any inherited abstract properties or methods that you have not implemented
in your subclass. This can be useful if you want the subclass to be concrete
and need to determine what abstract members the subclass inherits.

For example, suppose you subclass AbsClass, which is described in the
“Determine If a Class Is Abstract” on page 10-79 section:

classdef SubAbsClass < AbsClass
% Failed to implement absMethodOne
% defined as abstract in AbsClass

methods (Static)
function out = absMethodTwo(a,b)

out = a + b;

10-80

Defining Abstract Classes

end
end

end

Determine if you implemented all inherited class members using
meta.abstractDetails:

meta.findAbstract(?SubAbsClass)

Abstract methods for class SubAbsClass:
absMethodOne % defined in AbsClass

The SubAbsClass class itself is abstract because it has not implemented the
absMethodOne defined in AbsClass.

10-81

10 Building on Other Classes

Defining Interfaces

In this section...

“Interfaces and Abstract Classes” on page 10-82

“An Interface for Classes Implementing Graphs” on page 10-82

Interfaces and Abstract Classes
The properties and methods defined by a class form the interface that
determines how class users interact with objects of the class. When creating
a group of related classes, define a common interface to all these classes,
even though the actual implementations of this interface can differ from one
class to another.

For example, consider a set of classes designed to represent various graphs
(for example, line plots, bar graphs, pie charts, and so on). Suppose all classes
must implement a Data property to contain the data used to generate the
graph. However, the form of the data can differ considerably from one type
of graph to another. Consequently, the way each class implements the Data
property can be different.

The same differences apply to methods. All classes can have a draw method
that creates the graph, but the implementation of this method changes with
the type of graph.

The basic idea of an interface class is to specify the properties and
methods that each subclass must implement without defining the actual
implementation. This approach enables you to enforce a consistent interface
to a group of related objects. As you add more classes in the future, the
original interface remains.

An Interface for Classes Implementing Graphs
This example creates an interface for classes used to display specialized
graphs. The interface is an abstract class that defines properties and methods
that the subclasses must implement, but does not specify how to implement
these components. This approach enforces the use of a consistent interface

10-82

Defining Interfaces

while providing the necessary flexibility to implement the internal workings
of each specialized graph subclass differently.

In this example, the interface, derived subclasses, and a utility function are
contained in a package folder:

+graphics/graph.m % abstract interface class
+graphics/linegraph.m % concrete subclass

Interface Properties and Methods
The graph class specifies the following properties, which the subclasses must
define:

• Primitive — Handle of the Handle Graphics object used to implement
the specialized graph. The class user has no need to access these objects
directly so this property has protected SetAccess and GetAccess.

• AxesHandle — Handle of the axes used for the graph. The specialized
graph objects can set axes object properties and also limit this property’s
SetAccess and GetAccess to protected.

• Data— All specialized graph objects must store data, but the type of data
varies so each subclass defines the storage mechanism. Subclass users can
change the data so this property has public access rights.

The graph class names three abstract methods that subclasses must
implement. The graph class also suggests in comments that each subclass
constructor must accept the plot data and property name/property value pairs
for all class properties.

• subclass_constructor— Accept data and P/V pairs and return an object.

• draw— Used to create a drawing primitive and render a graph of the data
according to the type of graph implemented by the subclass.

• zoom — Implementation of a zoom method by changing the axes
CameraViewAngle property. The interface suggests the use of the camzoom
function for consistency among subclasses. The zoom buttons created by
the addButtons static method use this method as a callback.

10-83

10 Building on Other Classes

• updateGraph — Method called by the set.Data method to update the
plotted data whenever the Data property changes.

Interface Guides Class Design
The package of classes that derive from the graph abstract class implement
the following behaviors:

• Creating an instance of a specialized graph object (subclass object) without
rendering the plot

• Specifying any or none of the object properties when you create a
specialized graph object

• Changing any object property automatically updates the currently
displayed plot

• Allowing each specialized graph object to implement whatever additional
properties it requires to give class users control over those characteristics.

Defining the Interface
The graph class is an abstract class that defines the methods and properties
used by the subclasses. Comments in the abstract class suggest the intended
implementation:

classdef graph < handle

% Abstract class for creating data graphs

% Subclass constructor should accept

% the data that is to be plotted and

% property name/property value pairs

properties (SetAccess = protected, GetAccess = protected)

Primitive % HG primitive handle

AxesHandle % Axes handle

end

properties % Public access

Data

end

methods (Abstract)

draw(obj)

% Use a line, surface,

% or patch HG primitive

10-84

Defining Interfaces

zoom(obj,factor)

% Change the CameraViewAngle

% for 2D and 3D views

% use camzoom for consistency

updateGraph(obj)

% Called by the set.Data method

% to update the drawing primitive

% whenever the Data property is changed

end

methods

function set.Data(obj,newdata)

obj.Data = newdata;

updateGraph(obj)

end

function addButtons(gobj)

hfig = get(gobj.AxesHandle,'Parent');

uicontrol(hfig,'Style','pushbutton','String','Zoom Out',...

'Callback',@(src,evnt)zoom(gobj,.5));

uicontrol(hfig,'Style','pushbutton','String','Zoom In',...

'Callback',@(src,evnt)zoom(gobj,2),...

'Position',[100 20 60 20]);

end

end

end

The graph class implements the property set method (set.Data) to monitor
changes to the Data property. An alternative is to define the Data property
as Abstract and enable the subclasses to determine whether to implement
a set access method for this property. However, by defining the set access
method that calls an abstract method (updateGraph, which each subclass
must implement), the graph interface imposes a specific design on the whole
package of classes, without limiting flexibility.

Method to Work with All Subclasses
The addButtons method adds push buttons for the zoom methods, which each
subclass must implement. Using a method instead of an ordinary function
enables addButtons to access the protected class data (the axes handle). Use
the object’s zoom method as the push button callback.

function addButtons(gobj)

10-85

10 Building on Other Classes

hfig = get(gobj.AxesHandle,'Parent');
uicontrol(hfig,'Style','pushbutton','String','Zoom Out',...

'Callback',@(src,evnt)zoom(gobj,.5));
uicontrol(hfig,'Style','pushbutton','String','Zoom In',...

'Callback',@(src,evnt)zoom(gobj,2),...
'Position',[100 20 60 20]);

end

Deriving a Concrete Class — linegraph

Note Display the fully commented code for the linegraph class by clicking
this link: linegraph class.

This example defines only a single subclass used to represent a simple line
graph. It derives from graph, but provides implementations for the abstract
methods draw, zoom, updateGraph, and its own constructor. The base class
(graph) and subclass are all contained in a package (graphics), which you
must use to reference the class name:

classdef linegraph < graphics.graph

Adding Properties
The linegraph class implements the interface defined in the graph class
and adds two additional properties—LineColor and LineType. This class
defines initial values for each property, so specifying property values in the
constructor is optional. You can create a linegraph object with no data, but
you cannot produce a graph from that object.

properties
LineColor = [0 0 0];
LineType = '-';

end

The linegraph Constructor
The constructor accepts a struct with x and y coordinate data, as well as
property name/property value pairs:

10-86

Defining Interfaces

function gobj = linegraph(data,varargin)
if nargin > 0

gobj.Data = data;
if nargin > 2

for k=1:2:length(varargin)
gobj.(varargin{k}) = varargin{k+1};

end
end

end
end

Implementing the draw Method
The linegraph draw method uses property values to create a line object. The
linegraph class stores the line handle as protected class data. To support
the use of no input arguments for the class constructor, draw checks the Data
property to determine if it is empty before proceeding:

function gobj = draw(gobj)
if isempty(gobj.Data)

error('The linegraph object contains no data')
end
h = line(gobj.Data.x,gobj.Data.y,...

'Color',gobj.LineColor,...
'LineStyle',gobj.LineType);

gobj.Primitive = h;
gobj.AxesHandle = get(h,'Parent');

end

Implementing the zoom Method
The linegraph zoom method follows the comments in the graph class which
suggest using the camzoom function. camzoom provides a convenient interface
to zooming and operates correctly with the push buttons created by the
addButtons method.

Defining the Property Set Methods
Property set methods provide a convenient way to execute code automatically
when the value of a property changes for the first time in a constructor.
(See “Property Set Methods” on page 6-16.) The linegraph class uses set

10-87

10 Building on Other Classes

methods to update the line primitive data (which causes a redraw of the
plot) whenever a property value changes. The use of property set methods
provides a way to update the data plot quickly without requiring a call to the
draw method. The draw method updates the plot by resetting all values to
match the current property values.

Three properties use set methods: LineColor, LineType, and Data.
LineColor and LineType are properties added by the linegraph class and are
specific to the line primitive used by this class. Other subclasses can define
different properties unique to their specialization (for example., FaceColor).

The graph class implements the Data property set method. However, the
graph class requires each subclass to define a method called updateGraph,
which handles the update of plot data for the specific drawing primitive used.

Using the linegraph Class
The linegraph class defines the simple API specified by the graph base class
and implements its specialized type of graph:

d.x = 1:10;
d.y = rand(10,1);
lg = graphics.linegraph(d,'LineColor','b','LineType',':');
lg.draw;
graphics.graph.addButtons(lg);

Clicking the Zoom In button shows the zoom method providing the callback
for the button.

10-88

Defining Interfaces

Changing properties updates the graph:

d.y = rand(10,1); % new set of random data for y
lg.Data = d;
lg.LineColor = [.9 .1 .6]; % LineColor can be char or double

Now click Zoom Out and see the new results:

10-89

10 Building on Other Classes

10-90

11

Saving and Loading Objects

• “Understanding the Save and Load Process” on page 11-2

• “Modifying the Save and Load Process” on page 11-6

• “Maintaining Class Compatibility” on page 11-9

• “Passing Arguments to Constructors During Load” on page 11-14

• “Saving and Loading Objects from Class Hierarchies” on page 11-17

• “Saving and Loading Dynamic Properties” on page 11-20

• “Tips for Saving and Loading” on page 11-22

11 Saving and Loading Objects

Understanding the Save and Load Process

In this section...

“The Default Save and Load Process” on page 11-2

“When to Modify Object Saving and Loading” on page 11-4

The Default Save and Load Process
Use save and load to store objects:

save filename object
load filename object

What Information Is Saved
Saving objects in MAT-files saves:

• The full name of the object’s class, including any package qualifiers.

• Values of dynamic properties.

• The names and current values of all properties, except:

- Properties that have their Transient, Constant, or Dependent
attributes set to true. See “Specifying Property Attributes” on page 6-7
for a description of property attributes.

Loading Property Data
When loading objects from MAT-files the load function:

• Creates a new object.

• Calls the class constructor with no arguments only if the class’s
ConstructOnLoad attribute is set to true.

• Assigns the saved values to the object’s properties. These assignments
results in calls to property set methods defined by the class.

You can use property set methods to ensure property values are still valid in
cases where the class definition has changed.

11-2

Understanding the Save and Load Process

See “Property Set Methods” on page 6-16 for information on property set
methods.

Errors During Load
It is possible for a default value to cause an error in a property set method
(for example, the class definition might have changed). When an error occurs
while an object is being loaded from a file, MATLAB returns the saved values
in a struct. The field names correspond to the property names.

In cases where the saved object is derived from multiple superclasses that
define private properties having the same name, the struct contains the
property value of the most direct superclass only.

Saving and Loading Deleted Handle Objects
If you save a deleted handle, MATLAB load it as a deleted handle. For
example:

% Create a handle object
>> a = containers.Map('Monday','sunny')
isvalid(a)

ans =

1
% Delete the handle object
>> delete(a)
>> isvalid(a)

ans =

0

% Save the deleted handle
>> save savefile a

% Clear the variable a
>> clear a

% Load a back into the workspace

11-3

11 Saving and Loading Objects

>> load savefile a
>> isvalid(a)
ans =

0

See the handle class delete method and the clear command for more
information on these operations.

saveobj and loadobj
The save and load functions call your class’s saveobj and loadobj methods,
respectively, if your class defines these methods. You use these methods to
customize the save and load process.

When you issue a save command, MATLAB first calls your saveobj method
and passes the output of saveobj to save. Similarly, when you call load,
MATLAB passes the result of loading what you saved to loadobj. loadobj
must then return a properly constructed object. Therefore, you must design
saveobj and loadobj to work together.

When to Modify Object Saving and Loading
The following sections describe when and how to modify the process MATLAB
uses to save and load objects. You modify this process by implementing
saveobj and loadobj methods for your class.

Why Implement saveobj and loadobj
The primary reason for implementing saveobj and loadobj methods is to
support backward and forward compatibility of classes. For example, you
might have cases where:

• The class’s properties have changed (just adding a new property does not
necessarily require special code because it can be initialized to its default
value when loaded).

• The order in which properties are initialized is important due to a circular
reference to handle objects.

11-4

Understanding the Save and Load Process

• You must call the object’s constructor with arguments and, therefore,
cannot support a default constructor (no arguments).

Information to Consider
If you decide to modify the default save and load process, keep the following
points in mind:

• If your loadobj method generates an error, MATLAB still loads the objects
in whatever state the object was in before the invocation of loadobj.

• Subclass objects inherit superclass loadobj and saveobj methods.
Therefore, if you do not implement a loadobj or saveobj method in the
most specific class, MATLAB calls only the inherited methods.

If a superclass implements a loadobj or saveobj method, then your
subclass can also implement a loadobj or saveobj method that calls the
superclass methods as necessary. See “Saving and Loading Objects from
Class Hierarchies” on page 11-17 for more information.

• The load function does not call the default constructor by default. See
“Calling Constructor When Loading” on page 11-25 for more information.

• If an error occurs while the object is loading from a file, the load function
passes your loadobj method as much data as it can successfully load
from the file. In case of an error, load passes loadobj a struct whose
field names correspond to the property names extracted from the file. See
“Reconstructing Objects with loadobj” on page 11-15 for an example of a
loadobj method that processes a struct.

See “Tips for Saving and Loading” on page 11-22 for guidelines on saving and
loading objects.

11-5

11 Saving and Loading Objects

Modifying the Save and Load Process

In this section...

“Class saveobj and loadobj Methods” on page 11-6

“Processing Objects During Load” on page 11-7

“Save and Load Applications” on page 11-7

Class saveobj and loadobj Methods
You can define methods for your class that are executed when you call save
or load on an object:

• The save function calls your class’s saveobj method before performing the
save operation. The save function then saves the value returned by the
object’s saveobj method. You can use the saveobj method to return a
modified object or any other type of variable, such as a struct array.

• The load function calls your class’s loadobj method after loading the
object. The load function loads into the workspace the value returned
by the object’s loadobj method. If you define a loadobj method you can
modify the object being returned or reconstruct an object from the data
saved by your saveobj method.

If you implement a saveobj method that modifies the object being saved,
implement a loadobj method to return the object to its proper state when
reloading it. For example, you might want to store an object’s data in a
struct array and reconstruct the object when reloaded to manage changes
to the class definition.

Implement loadobj as a Static Method
You must implement the loadobj method as a Static method because
loadobj can actually be called with a struct or other data instead of an
object of the class. You can implement the saveobj method as an ordinary
method (i.e., calling it requires an instance of the class).

MATLAB saves the object’s class name so that load can determine which
loadobj method to call, even if your saveobj method saves only the object’s
data in an array and not the object itself.

11-6

Modifying the Save and Load Process

Processing Objects During Load
Implementing a loadobj method enables you to apply some processing to the
object before it is loaded into the workspace. You might need to do this if:

• The class definition has changed since the object was saved and you need to
modify the object before reloading.

• A saveobj method modified the object during the save operation, perhaps
saving data in an array, and the loadobj method must reconstruct the
object based on the output of saveobj.

Updating an Object Property When Loading
In the following example, the loadobj method checks if the object to be loaded
has an old, shorter account number and calls a function to return an updated
account number if necessary. After updating the object’s AccountNumber
property, loadobj returns the object to be loaded into the workspace.

methods (Static = true)

function obj = loadobj(a)

accnb = a.AccountNumber;

if length(num2str(accnb)) < 12

a.AccountNumber = updateAccountNumber(accnb); % update object

end

obj = a; % return the updated object

end

end

In this case, you do not need to implement a saveobj method. You are using
loadobj only to ensure older saved objects are brought up to date before
loading.

The “Save and Load Applications” on page 11-7 section provides an example
in which loadobj performs specific operations to recreate an object based on
the data returned by saveobj during the save operation.

Save and Load Applications
The following sections describe some specific applications involving the saving
and loading of objects.

11-7

11 Saving and Loading Objects

• “Maintaining Class Compatibility” on page 11-9 — how to maintain
compatibility among progressive versions of an application.

• “Passing Arguments to Constructors During Load” on page 11-14 — using
loadobj to call the class constructor of an object when you need to pass
arguments to the constructor during load.

• “Saving and Loading Objects from Class Hierarchies” on page 11-17 — how
inherited methods affect saving and loading objects.

• “Saving and Loading Dynamic Properties” on page 11-20 — how to handle
dynamic properties when saving and loading objects.

11-8

Maintaining Class Compatibility

Maintaining Class Compatibility

Versions of a Phone Book Application Program
This section shows you how to use saveobj and loadobj methods to maintain
compatibility among subsequent releases of an application program. Suppose
you have created a program that implements a phone book application, which
can be used to keep track of information about various people and companies.

One of the key elements of this program is that it uses a data structure
to contain the information for each phone book entry. You save these
data structures in MAT-files. This example shows ways to maintain the
compatibility of subsequent versions of the data structures as you implement
new versions of the program.

When the phone book application program loads a particular phone book
entry by reading a variable from a Mat-file, it must ensure that the loaded
data can be used by the current version of the application.

Version 1 — Stores Data in struct
Suppose in Version 1 of the phone book application program, you used an
ordinary MATLAB struct to save phone book entries in the fields: Name,
Address, and PhoneNumber. Your phone book application program saves these
variables in a MAT-file. For example, here is a typical entry:

V1.Name = 'The MathWorks, Inc.';
V1.Address = '3 Apple Hill Drive, Natick, MA, 01760';
V1.PhoneNumber = '5086477000';

Version 2 — Maps struct Fields to Object Properties
With Version 2 of the phone book program, you change from a struct to a
class having public properties with the same names as the fields in the struct.
You want to save the new PhoneBookEntry objects and you want to load the
old struct without causing any errors. To maintain this compatibility, the
PhoneBookEntry class implements loadobj and saveobj methods:

classdef PhoneBookEntry
properties

Name

11-9

11 Saving and Loading Objects

Address
PhoneNumber

end
methods (Static)

function obj = loadobj(obj)
if isstruct(obj)

% Call default constructor
newObj = PhoneBookEntry;
% Assign property values from struct
newObj.Name = obj.Name;
newObj.Address = obj.Address;
newObj.PhoneNumber = obj.PhoneNumber;
obj = newObj;

end
end

end
methods

function obj = saveobj(obj)
s.Name = obj.Name;
s.Address = obj.Address;
s.PhoneNumber = obj.PhoneNumber;
obj = s;

end
end

end

saveobj saves the object data in a struct that uses property names for field
names. This struct is compatible with Version 1 of the product. When the
struct is loaded into Version 2 of the phone book application program, the
static loadobj method converts the struct to a PhoneBookEntry object. For
example, given the previously defined struct V1:

V1 =

Name: 'MathWorks, Inc.'
Address: '3 Apple Hill Drive, Natick, MA, 01760'

PhoneNumber: '5086477000'

The application program can use the loadobj static method to convert this
Version 1 struct to a Version 2 object:

11-10

Maintaining Class Compatibility

V2 = PhoneBookEntry.loadobj(V1)

V2 =

PhoneBookEntry

Properties:
Name: 'MathWorks, Inc.'

Address: '3 Apple Hill Drive, Natick, MA, 01760'
PhoneNumber: '5086477000'

If a Version 2 PhoneBookEntry object is loaded, load automatically calls the
object’s loadobj method, which converts the struct to an object compatible
with Version 2 of the phone book application program.

Version 3 — Adds More Properties to Class
In Version 3, you change the PhoneBookEntry class by splitting the Address
property into StreetAddress, City, State, and ZipCode properties. With
this version, you cannot load a Version 3 PhoneBookEntry object in previous
releases by default. However, the saveobj method provides an option to save
Version 3 objects as structs that you can load in Version 2. The loadobj
method enables you to load both Version 3 objects and Version 2 structs.

Here is the new version of the PhoneBookEntry class.

classdef PhoneBookEntry

properties

Name

StreetAddress

City

State

ZipCode

PhoneNumber

end

properties (Constant)

Sep = ', ';

end

properties (Dependent, SetAccess=private)

Address

end

11-11

11 Saving and Loading Objects

properties (Transient)

SaveInOldFormat = 0;

end

methods (Static)

function obj = loadobj(obj)

if isstruct(obj)

% Call default constructor

newObj = PhoneBookEntry;

% Assign property values from struct

newObj.Name = obj.Name;

newObj.Address = obj.Address;

newObj.PhoneNumber = obj.PhoneNumber;

obj = newObj;

end

end

end

methods

function address = get.Address(obj)

address=[obj.StreetAddress obj.Sep obj.City obj.Sep obj.State obj.Sep obj.ZipCode];

end

function obj = set.Address(obj,address)

addressItems = regexp(address,obj.Sep,'split');

if length(addressItems) == 4

obj.StreetAddress = addressItems{1};

obj.City = addressItems{2};

obj.State = addressItems{3};

obj.ZipCode = addressItems{4};

else

error('PhoneBookEntry:InvalidAddressFormat', ...

'Invalid address format.');

end

end

function obj = saveobj(obj)

% If set to true, save as a struct

if obj.SaveInOldFormat

s.Name = obj.Name;

s.Address = obj.Address;

s.PhoneNumber = obj.PhoneNumber;

obj = s;

end

11-12

Maintaining Class Compatibility

end

end

To maintain compatibility among all versions, Version 3 of the
PhoneBookEntry class applies the following techniques:

• Preserve the Address property (which is used in Version 2) as a Dependent
property with private SetAccess.

• Define an Address property get method (get.Address) to build a string
that is compatible with the Version 2 Address property.

• The get.Address method is invoked from the saveobj method to assign
the object data to a struct that is compatible with previous versions. The
struct continues to have only an Address field built from the data in the
new StreetAddress, City, State, and ZipCode properties.

• As the loadobj method sets the object’s Address property, it invokes the
property set method (set.Address), which extracts the substrings required
by the StreetAddress, City, State, and ZipCode properties.

• The Transient (not saved) property SaveInOldFormat enables you to
specify whether to save the Version 3 object as a struct or an object.

See “Property Access Methods” on page 6-14 for more on property set and
get methods.

11-13

11 Saving and Loading Objects

Passing Arguments to Constructors During Load

In this section...

“Calling Constructors When Loading Objects” on page 11-14

“Code for This Example” on page 11-14

“Example Overview” on page 11-14

Calling Constructors When Loading Objects
You can set the class ConstructOnLoad attribute when you need to call the
default (no argument) class constructor on an object that is loaded from a
MAT-file. Then load automatically calls the object’s class constructor, but
cannot pass any arguments to it.

If the object you are loading requires a call to its class constructor and this
call requires you to pass arguments to the constructor, you can implement a
loadobj method that performs this task. For example, suppose the object’s
constructor adds a listener and, therefore, must be passed a handle to the
object triggering the event (required by the addlistener handle class method)
to create this listener. Your loadobj method could call the constructor with
the required argument.

Code for This Example
The following information on saving and loading objects refers to a
BankAccountSL class. Click the following link to open the full code for this
class in the MATLAB editor:

Open class definition in editor

Example Overview
This example shows how to use loadobj to call a class constructor with
arguments at load time. Because the constructor requires arguments, you
cannot use the ConstructOnLoad attribute to load the object, which causes
a call to the default (no arguments) constructor.

11-14

Passing Arguments to Constructors During Load

This example uses loadobj to determine the status of a BankAccountSL object
when the object data is loaded, and then calls the class constructor with the
appropriate arguments to create the object. This approach provides a way to
modify the criteria for determining status over time, while ensuring that all
loaded objects are using the current criteria.

The saveobj method extracts the data from the object and writes this data
into a struct, which saveobj returns to the save function.

Saving Only Object Data with saveobj
The following saveobj method saves the values of the BankAccountSL object’s
AccountNumber and AccountBalance properties in the struct variable A,
which has field names that match the property names. saveobj then returns
the variable A to be saved in the MAT-file by the save function.

methods

function A = saveobj(obj)

A.AccountNumber = obj.AccountNumber;

A.AccountBalance = obj.AccountBalance;

end

end

Reconstructing Objects with loadobj
The BankAccountSL class AccountStatus property is Transient because its
value depends on the value of the AccountBalance property and the current
criteria and possible status values. You can use the loadobj method to
update all saved BankAccount objects when they are loaded into your system.

To create a valid object, loadobj calls the constructor using the data saved in
the struct A and passes any other required arguments.

If the account balance is greater than zero, AccountStatus is set to open. If
the account balance is zero or less, AccountStatus is set to overdrawn or to
frozen.

The following loadobj method calls the class constructor with the appropriate
values for the arguments:

methods (Static)

11-15

11 Saving and Loading Objects

function obj = loadobj(A)

if A.AccountBalance > 0

obj = BankAccountSL(A.AccountNumber,A.AccountBalance,'open');

elseif A.AccountBalance < 0) && (A.AccountBalance >= -100)

obj = BankAccountSL(A.AccountNumber,A.AccountBalance,'overdrawn');

else

obj = BankAccountSL(A.AccountNumber,A.AccountBalance,'frozen');

end

end

end

11-16

Saving and Loading Objects from Class Hierarchies

Saving and Loading Objects from Class Hierarchies

Saving and Loading Subclass Objects
When you modify the save operation of an object that is part of a class
hierarchy, you must be sure that all classes in the hierarchy perform the
correct operations in the save and load process. If the most specific class of an
object does not define a loadobj or saveobj method, this class can inherit
loadobj or saveobj methods from a superclass.

If any class in the hierarchy defines special save and load behavior:

• Define saveobj for all classes in the hierarchy.

• Call superclass saveobj methods from the subclass saveobj method
because the save function calls only one saveobj method.

• If saveobj returns a struct instead of the object, then the subclass can
implement a loadobj method to reconstruct the object.

• The subclass loadobj method can call the superclass loadobj, or other
methods as required, to assign values to their properties.

Reconstructing the Subclass Object from a Saved Struct
Suppose you want to save a subclass object by first converting its property
data to a struct in the class’s saveobj method and then reconstruct the
object when loaded using its loadobj method. This action requires that:

• Superclasses implement saveobj methods to save their property data in
the struct.

• The subclass saveobj method calls each superclass saveobj method and
then returns the completed struct to the save function, which writes the
struct to the MAT-file.

• The subclass loadobj method creates a subclass object and then calls
superclass methods to assign their property values in the subclass object.

• The subclass loadobj method returns the reconstructed object to the load
function, which loads the object into the workspace.

11-17

11 Saving and Loading Objects

The following superclass (MySuper) and subclass (MySub) definitions show how
to code these methods. The MySuper class defines a loadobj method to enable
an object of this class to be loaded directly. The subclass loadobjmethod calls
a method named reload after it constructs the subclass object. reload first
calls the superclass reload method to assign superclass property values and
then assigns the subclass property value.

classdef MySuper

% Superclass definition

properties

X

Y

end

methods

function S = saveobj(obj)

% Save property values in struct

% Return struct for save function to write to MAT-file

S.PointX = obj.X;

S.PointY = obj.Y;

end

function obj = reload(obj,S)

% Method used to assign values from struct to properties

% Called by loadobj and subclass

obj.X = S.PointX;

obj.Y = S.PointY;

end

end

methods (Static)

function obj = loadobj(S)

% Constructs a MySuper object

% loadobj used when a superclass object is saved directly

% Calls reload to assign property values retrived from struct

% loadobj must be Static so it can be called without object

obj = MySuper;

obj = reload(obj,S);

end

end

end

11-18

Saving and Loading Objects from Class Hierarchies

Your subclass implements saveobj and loadobj methods that call superclass
methods.

classdef MySub < MySuper
% Subclass definition

properties
Z

end
methods

function S = saveobj(obj)
% Call superclass saveobj
% Save property values in struct

S = saveobj@MySuper(obj);
S.PointZ = obj.Z;

end
function obj = reload(obj,S)
% Call superclass reload method
% Assign subclass property value
% Called by loadobj

obj = reload@MySuper(obj,S);
obj.Z = S.PointZ;

end
end
methods (Static)

function obj = loadobj(S)
% Create object of MySub class
% Assign property value retrived from struct
% loadobj must be Static so it can be called without object

obj = MySub;
obj = reload(obj,S);

end
end

end

11-19

11 Saving and Loading Objects

Saving and Loading Dynamic Properties

Reconstructing Objects That Have Dynamic Properties
If you use the addprop method to add dynamic properties to a MATLAB class
derived from the dynamicprops class, those dynamic properties are saved
along with the object to which they are attached when you save the object to a
MAT-file. See “Dynamic Properties — Adding Properties to an Instance” on
page 6-26 for more information about dynamic properties.

Why You Need saveobj and loadobj Methods
save saves dynamic properties and their values. However, save does not save
dynamic property attributes because these attributes are not specified in the
class definition. If you are saving an object that has dynamic properties, and
these properties use nondefault attributes, you need to manage the saving
and loading of attribute values using saveobj and loadobj.

If your class implements a saveobjmethod that converts the object to another
type of MATLAB variable, such as a struct, you can save the dynamic
property’s attribute values so that your loadobjmethod can reconstruct these
properties. The attribute values of dynamic properties are not part of the
class definition and might have been set after the properties were attached to
the object, so these values might not be known to the loadobj method.

Implementing the saveobj and loadobj Methods
For example, your saveobj method can obtain the nondefault attribute values
from the dynamic property’s meta.DynamicProperty. Suppose the object
you are saving has a dynamic property called DynoProp, and your saveobj
method creates a struct s to save the data that the loadobj method uses to
reconstruct the object:

methods
function s = saveobj(obj)
...
% Obtain the meta.DynamicProperty object for the dynamic property
metaDynoProp = findprop(obj,'DynoProp');
% Record name and value for the dynamic property
s.dynamicprops(1).name = metaDynoProp.Name;

11-20

Saving and Loading Dynamic Properties

s.dynamicprops(1).value = obj.DynoProp;
% Record additional dynamic property attributes so they can be
% restored at load time, for example SetAccess and GetAccess
s.dynamicprops(1).setAccess = metaDynoProp.SetAccess;
s.dynamicprops(1).getAccess = metaDynoProp.GetAccess;
...
end

end

Your loadobj method can add the dynamic property and set the attribute
values:

methods (Static)
function obj = loadobj(s)
% first, create an instance of the class

obj = ClassConstructor;
...
% Add new dynamic property to object
metaDynoProp = addprop(obj,s.dynamicprops(1).name);
obj.(s.dynamicprops(1).name) = s.dynamicprops(1).value;
% Restore dynamic property attributes
metaDynoProp.SetAccess = s.dynamicprops(1).setAccess;
metaDynoProp.GetAccess = s.dynamicprops(1).getAccess;

end
end

11-21

11 Saving and Loading Objects

Tips for Saving and Loading

In this section...

“Using Default Property Values to Reduce Storage” on page 11-22

“Avoiding Property Initialization Order Dependency” on page 11-23

“When to Use Transient Properties” on page 11-25

“Calling Constructor When Loading” on page 11-25

Using Default Property Values to Reduce Storage
When loading an object, MATLAB creates a new object and assigns the stored
property values. For properties that had default values at the time you
saved the object, MATLAB loads the saved default values, even if the class
definition defines new default values for those properties.

See “Defining Default Values” on page 3-11 for more information on how
MATLAB evaluates default value expressions.

Reducing Object Storage
If a property is often set to the same value, define a default value for that
property. When the object is saved to a MAT-file, MATLAB does not save the
default value, thereby, saving storage space.

Implementing Forward and Backward Compatibility
Default property values can help you implement version compatibility for
saved objects. For example, if you add a new property to version 2 of your
class, having a default value enables MATLAB to assign a value to the new
property when loading a version 1 object.

Similarly, if version 2 of your class removes a property, then if a version 2
object is saved and loaded into version 1, your loadobj method can use the
default value from version 1 for the version 2 object.

11-22

Tips for Saving and Loading

Avoiding Property Initialization Order Dependency
Use a Dependent property when the property value needs to be calculated at
runtime. Whenever you can use a dependent property in your class definition
you save storage for saved objects. Dependent is a property attribute (see
“Property Attributes” on page 6-8 for a complete list.)

Controlling Property Loading
If your class design is such that setting one property value causes other
property values to be updated, then you can use dependent properties to
ensure objects load properly. For example, consider the following Odometer
class. It defines two public properties: TotalDistance and Units. Whenever
Units is modified, the TotalDistance is modified to reflect the change.
There is also a private property, PrivateUnits, and a constant property
ConversionFactor.

classdef Odometer
properties(Constant)

ConversionFactor = 1.6
end
properties

TotalDistance = 0
end
properties(Dependent)

Units
end
properties(Access=private)

PrivateUnits = 'mi'
end
methods

function unit = get.Units(obj)
unit = obj.PrivateUnits;

end
function obj = set.Units(obj, newUnits)

% validate newUnits to be a string
switch(newUnits)

case 'mi'
if strcmp(obj.Units, 'km')

obj.TotalDistance = obj.TotalDistance / ...
obj.ConversionFactor;

11-23

11 Saving and Loading Objects

obj.PrivateUnits = newUnits;
end

case 'km'
if strcmp(obj.Units, 'mi')

obj.TotalDistance = obj.TotalDistance * ...
obj.ConversionFactor;

obj.PrivateUnits = newUnits;
end

otherwise
error('Odometer:InvalidUnits', ...

'Units ''%s'' is not supported.', newUnits);
end

end
end

end

Suppose you create an instance of Odometer with the following property
values:

odObj = Odometer;
odObj.Units = 'km';
odObj.TotalDistance = 16;

When you save the object, the following happens to property values:

• ConversionFactor is not saved because it is a Constant property.

• TotalDistance is saved.

• Units is not saved because it is a Dependent property.

• PrivateUnits is saved and provides the storage for the current value of
Units.

When you load the object, the following happens to property values:

• ConversionFactor is obtained from the class definition.

• TotalDistance is loaded from the saved object.

• Units is not loaded so its set method is not called.

11-24

Tips for Saving and Loading

• PrivateUnits is loaded and contains the value that is used if the Units
get method is called.

If the Units property was not Dependent, loading it calls its set method and
causes the TotalDistance property to be set again.

When to Use Transient Properties
The value of a Transient property is never stored when an object is saved
to a file, but instances of the class do allocate storage to hold a value for
this property. These two characteristics make a Transient property useful
for cases where data needs to be stored in the object temporarily as an
intermediate computation step, or for faster retrieval. (See “Property
Attributes” on page 6-8 for a complete list of properties.)

You can use Transient properties to reduce storage space and simplify the
load process in cases where:

• The property data can be easily reproduced at run-time.

• The property represent intermediate state that you can discard

Calling Constructor When Loading
MATLAB does not call the class constructor when loading an object from a
MAT-file. However, if you set the ConstructOnLoad class attribute to true,
load does call the constructor with no arguments.

Enabling ConstructOnLoad is useful when you do not want to implement a
loadobj method, but do need to perform some actions at construction time,
such as registering listeners for another object. You must be sure that the
class constructor can be called with no arguments without generating an
error. See “Supporting the No Input Argument Case” on page 7-19.

In cases where the class constructor sets only some property values based
on input arguments, then using ConstructOnLoad is probably not useful.
See “Passing Arguments to Constructors During Load” on page 11-14 for an
alternative.

11-25

11 Saving and Loading Objects

11-26

12

Enumerations

• “Defining Named Values” on page 12-2

• “Working with Enumerations” on page 12-4

• “Enumerations Derived from Built-In Types” on page 12-16

• “Mutable (Handle) vs. Immutable (Value) Enumeration Members” on
page 12-22

• “Enumerations That Encapsulate Data” on page 12-30

• “Saving and Loading Enumerations” on page 12-35

12 Enumerations

Defining Named Values

Kinds of Predefined Names
MATLAB supports two kinds of predefined names:

• Constant properties

• Enumerations

Constant Properties
Use constant properties when you want a collection of related constant values
whose values can belong to different types (numeric values, character strings,
and so on). Define properties with constant values by setting the property
Constant attribute. Reference constant properties by name whenever you
need access to that particular value.

See “Properties with Constant Values” on page 13-2 for more information.

Enumerations
Use enumerations when you want to create a fixed set of names representing
a single type of value. You can derive enumeration classes from other classes
to inherit the operations of the superclass. For example, if you define an
enumeration class that subclasses a MATLAB numeric class like double or
int32, the enumeration class inherits all of the mathematical and relational
operations that MATLAB defines for those classes.

Using enumerations instead of character strings to represent a value, such as
colors ('red'), can result in more readable code because:

• You can compare enumeration members with == instead of using strcmp

• Enumerations maintain type information, strings do not. For example,
passing a string 'red' to functions means that every function must
interpret what 'red' means. If you define red as an enumeration, the
actual value of 'red' can change (from [1 0 0] to [.93 .14 .14], for
example) without updating every function that accepts colors, as you would
if you defined the color as a string 'red'.

12-2

Defining Named Values

Define enumerations by creating an enumeration block in the class definition.

See “Working with Enumerations” on page 12-4 for more information.

12-3

12 Enumerations

Working with Enumerations

In this section...

“Basic Knowledge” on page 12-4

“Using Enumeration Classes” on page 12-5

“Defining Methods in Enumeration Classes” on page 12-9

“Defining Properties in Enumeration Classes” on page 12-9

“Array Expansion Operations” on page 12-11

“Constructor Calling Sequence” on page 12-11

“Restrictions Applied to Enumeration Classes” on page 12-13

“Techniques for Defining Enumerations” on page 12-13

Basic Knowledge
The material presented in this section builds on an understanding of the
information provided in the following sections.

Defining Classes and Class Members

• “Class Syntax Fundamentals”

• “Creating Subclasses — Syntax and Techniques” on page 10-7

• “Mutable and Immutable Properties” on page 6-13

• enumeration function displays enumeration names

Terminology and Concepts

This documentation uses terminology as described in the following list:

• Enumeration or Enumeration class— A class that contains an enumeration
block defining enumeration members.

• Enumeration member— A named instance of an enumeration class.

• Enumeration member constructor arguments— Values in parentheses next
to the enumeration member name in the enumeration block. When you

12-4

Working with Enumerations

create an instance of an enumeration member, MATLAB passes the value
or values in parenthesis to the class constructor.

• Underlying value — For enumerations derived from built-in classes, the
value associated with an instance of an enumeration class (that is, an
enumeration member).

Using Enumeration Classes
Create an enumeration class by adding an enumeration block to a class
definition. For example, the WeekDays class enumerates a set of days of the
week.

classdef WeekDays
enumeration

Monday, Tuesday, Wednesday, Thursday, Friday
end

end

Constructing an Enumeration Member
Refer to an enumeration member using the class name and the member name:

ClassName.MemberName

For example, assign the enumeration member WeekDays.Tuesday to the
variable today:

today = WeekDays.Tuesday;

today is a variable of class WeekDays:

>> whos
Name Size Bytes Class Attributes

today 1x1 56 WeekDays

>> today

today =

Tuesday

12-5

12 Enumerations

Default Methods
Enumeration classes have four methods by default:

>> methods(today)

Methods for class WeekDays:

WeekDays char eq ne

• Default constructor (WeekDays in this case)

• char— converts enumeration members to character strings

• eq — enables use of == in expressions

• ne — enables use of ~= in expressions

Equality and inequality methods enable you to use enumeration members in
if and switch statements and other functions that test for equality.

Because you can define enumeration members with descriptive names,
conversion to char is useful. For example:

today = WeekDays.Friday;
['Today is ',char(today)]
ans =

Today is Friday

Testing for Membership in a Set
Suppose you want to determine if today is a meeting day for your team.

today = WeekDays.Tuesday;
teamMeetings = [WeekDays.Wednesday WeekDays.Friday];

Use the ismember function to determine if today is a meeting day:

ismember(today,teamMeetings)
ans =

0

12-6

Working with Enumerations

Using Enumerations in a Switch Statement
Enumerations work in switch statements:

function c = Reminder(day)
% Add error checking here
switch(day)

case WeekDays.Monday
c = 'Department meeting at 10:00';

case WeekDays.Tuesday
c = 'Meeting Free Day!';

case {WeekDays.Wednesday WeekDays.Friday}
c = 'Team meeting at 2:00';

case WeekDays.Thursday
c = 'Volley ball night';

end
end

Pass a member of the WeekDays enumeration class to the Reminder function:

>> today = WeekDays.Wednesday;
>> Reminder (today)

ans =

Team meeting at 2:00

See “Objects In Switch Statements” on page 3-34 for more information.

Getting Information About Enumerations
You can get information about enumeration classes using the enumeration
function. For example:

enumeration WeekDays

Enumeration members for class 'WeekDays':

Monday
Tuesday
Wednesday
Thursday

12-7

12 Enumerations

Friday

See also “Metaclass EnumeratedValues Property” on page 14-7

Converting to Superclass Value
If an enumeration class specifies a superclass, in many cases you can convert
an enumeration object to the superclass by passing the object to the superclass
constructor. However, the superclass must be able to accept its own class as
input and return an instance of the superclass. MATLAB built-in numeric
classes, like double, single, and so on allow this conversion.

For example, the Bearing class derives from the uint32 built-in class:

classdef Bearing < uint32
enumeration

North (0)
East (90)
South (180)
West (270)

end
end

Assign the Bearing.East member to the variable a:

a = Bearing.East;

Pass a to the superclass constructor and return an object of the superclass, b:

b = uint32(a);
whos

Name Size Bytes Class Attributes

a 1x1 60 Bearing
b 1x1 4 uint32

The uint32 constructor accepts an instance of the subclass Bearing and
returns and object of class uint32.

12-8

Working with Enumerations

Defining Methods in Enumeration Classes
Define methods in an enumeration class like any MATLAB class. For example,
here is the WeekDays class with a method called isMeetingDay added:

classdef WeekDays
enumeration

Monday, Tuesday, Wednesday, Thursday, Friday
end
methods

function tf = isMeetingDay(obj)
tf = ~(WeekDays.Tuesday == obj);

end
end

end

Call isMeetingDay with an instance of the WeekDays class:

>> today = WeekDays.Tuesday;
>> today.isMeetingDay

ans =

0

You can pass the enumeration member to the method directly:

>> isMeetingDay(WeekDays.Wednesday)

ans =

1

Defining Properties in Enumeration Classes
Add properties to an enumeration class when you must store data related to
the enumeration members. Set the property values in the class constructor.
For example, the SyntaxColors class defines three properties whose values
the constructor assigns to the values of the input arguments when you
reference a class member.

classdef SyntaxColors
properties

12-9

12 Enumerations

R
G
B

end
methods

function c = SyntaxColors(r, g, b)
c.R = r; c.G = g; c.B = b;

end
end
enumeration

Error (1, 0, 0)
Comment (0, 1, 0)
Keyword (0, 0, 1)
String (1, 0, 1)

end
end

When you refer to an enumeration member, the constructor initializes the
property values:

e = SyntaxColors.Error;

e.R

ans =

1

Because SyntaxColors is a value class (it does not derive from handle), only
the class constructor can set property values:

e.R = 0
Setting the 'R' property of the 'SyntaxColors' class
is not allowed.

See “Mutable (Handle) vs. Immutable (Value) Enumeration Members” on page
12-22 for more information on enumeration classes that define properties.

12-10

Working with Enumerations

Array Expansion Operations
MATLAB enables assignment to any element of an array, even if the array
does not exist. For example, you can create an array of WeekDays objects:

classdef WeekDays
enumeration

Monday, Tuesday, Wednesday, Thursday, Friday
end

end

clear
ary(5) = WeekDays.Tuesday;

MATLAB must initialize the values of array elements ary(1:4). The default
value of an enumeration class is the first enumeration member defined by
the class in the enumeration block. The result of the assignment to the fifth
element of the array ary is, therefore:

ary
ary =

Monday Monday Monday Monday Tuesday

Constructor Calling Sequence
Each statement in an enumeration block is the name of an enumeration
member, optionally followed by an argument list. If the enumeration class
defines a constructor, MATLAB calls the constructor to create the enumerated
instances.

MATLAB provides a default constructor for all enumeration classes that
do not explicitly define a constructor. The default constructor creates an
instance of the enumeration class:

• Using no input arguments, if the enumeration member defines no input
arguments

• Using the input arguments defined in the enumeration class for that
member

For example, the input arguments for the Boolean class are 0 for Boolean.No
and 1 for Boolean.Yes.

12-11

12 Enumerations

classdef Boolean < logical
enumeration

No (0)
Yes (1)

end
end

The values of 0 and 1 are of class logical because the default constructor
passes the argument to the first superclass. That is,

n = Boolean.No;

results in a call to logical that is equivalent to the following statement in a
constructor:

function obj = Boolean(val)
obj@logical(val)

end

MATLAB passes the member argument only to the first superclass. For
example, suppose Boolean derived from another class:

classdef Boolean < logical & MyBool
enumeration

No (0)
Yes (1)

end
end

The MyBool class can add some specialized behavior:

classdef MyBool
methods

function boolValues = testBools(obj)
...
end

end
end

Now, the default Boolean constructor behaves as if defined like this function:

function obj = Boolean(val)

12-12

Working with Enumerations

obj@logical(val) % Argument passed to first superclass constructor
obj@MyBool % No arguments passed to subsequent constructors

end

Restrictions Applied to Enumeration Classes
Enumeration classes, which consist of a fixed set of possible values, restrict
certain aspects of class use and definition:

• Enumeration classes are implicitly Sealed. You cannot define a subclass of
an enumeration class because doing so would expand the set.

• You cannot call the constructor of an enumeration class directly. Only
MATLAB can call enumeration class constructors to create the fixed set
of members.

• The properties of value-based enumeration classes are immutable. Only
the constructor can assign property values. MATLAB implicitly defines the
SetAccess attributes of all properties defined by value-based enumeration
classes as immutable. You cannot set the SetAccess attribute to any
other value.

• All properties inherited by a value-based enumeration class that are not
defined as Constant must have immutable SetAccess.

• The properties of handle-based enumeration classes are mutable. You can
set property values on instances of the enumeration class. See “Mutable
(Handle) vs. Immutable (Value) Enumeration Members” on page 12-22
for more information.

• An enumeration member cannot have the same name as a property,
method, or event defined by the same class.

• Enumerations do not support colon (a:b) operations. For example,
FlowRate.Low:FlowRate.High causes an error even if the FlowRate class
derives from a numeric superclass.

Techniques for Defining Enumerations
Enumerations enable you to define names that represent entities useful to
your application, without using numeric values or character strings. All
enumerations support equality and inequality operations. Therefore, switch,
if, and a number of comparison functions like isequal and ismember work
with enumeration members.

12-13

12 Enumerations

You can define enumeration classes in ways that are most useful to your
application, as described in the following sections.

Simple Enumerated Names
Simple enumeration classes have no superclasses and no properties. These
classes define a set of related names that have no underlying values associated
with them. Use this kind of enumeration when you want descriptive names,
but your application does not require specific information associated with
the name.

See the WeekDays class in the “Defining Methods in Enumeration Classes”
on page 12-9 section.

Enumerations with Built-In Class Behaviors
Enumeration classes that subclass MATLAB built-in classes inherit most
of the behaviors of those classes. For example, an enumeration class
derived from the double class inherits the mathematical, relational, and set
operations that work with variables of the class.

Enumerations do not support the colon (:) operator, even if the superclass
does. See “Restrictions Applied to Enumeration Classes” on page 12-13 for
more information.

See “Enumerations Derived from Built-In Types” on page 12-16.

Enumerations with Properties for Member Data
Enumeration classes that do not subclass MATLAB built-in numeric and
logical classes can define properties. These classes can define constructors
that set each member’s unique property values.

The constructor can save input arguments in property values. For example,
a Color class can specify a Red enumeration member color with three (Red,
Green, Blue) values:

enumeration
Red (1,0,0)

end

12-14

Working with Enumerations

See “Enumerations That Encapsulate Data” on page 12-30

12-15

12 Enumerations

Enumerations Derived from Built-In Types

In this section...

“Basic Knowledge” on page 12-16

“Why Derive Enumerations from Built-In Types” on page 12-16

“Aliasing Enumeration Names ” on page 12-18

“Superclass Constructor Returns Underlying Value” on page 12-19

“Default Converter” on page 12-20

Basic Knowledge
The material presented in this section builds on an understanding of the
information provided in the following sections.

• “Fundamental MATLAB Classes” for information on MATLAB built-in
classes.

• enumeration function displays enumeration names

Why Derive Enumerations from Built-In Types

Note Enumeration classes derived from built-in numeric and logical classes
cannot define properties.

If an enumeration class subclasses a built-in numeric class, the subclass
inherits ordering and arithmetic operations, which you can apply to the
enumerated names.

For example, the Results class subclasses the int32 built-in class and
associates an integer value with each of the four enumeration members —
First, Second, Third, and NoPoints.

classdef Results < int32
enumeration

First (100)
Second (50)

12-16

Enumerations Derived from Built-In Types

Third (10)
NoPoints (0)

end
end

Because the enumeration member inherits the methods of the int32 class
(not the colon operator), you can use these enumerations like numeric values
(summed, sorted, averaged, and so on).

isa(Results.Second,'int32')

ans =

1

For example, use enumeration names instead of numbers to rank two teams:

Team1 = [Results.First, Results.NoPoints, Results.Third, Results.Second];
Team2 = [Results.Second, Results.Third, Results.First, Results.First];

Perform int32 operations on these Results enumerations:

sum(Team1)
ans =

160
mean(Team1)
ans =

40
sort(Team2,'descend')

ans =

First First Second Third
Team1 > Team2

ans =

1 0 0 0
sum(Team1) < sum(Team2)

12-17

12 Enumerations

ans =

1

Creating Enumeration Instances
When you first refer to an enumeration class that derives from a built-in
class such as, int32, MATLAB passes the input arguments associated with
the enumeration members to the superclass constructor. For example,
referencing the Second Results member, defined as:

Second (50)

means that MATLAB calls:

int32(50)

to initialize the int32 aspect of this Results object.

Aliasing Enumeration Names
Enumeration classes that derive from MATLAB built-in numeric and logical
classes can define more than one name for an underlying value. The first
name in the enumeration block with a given underlying value is the actual
name for that underlying value and subsequent names are aliases.

Specify aliased names with the same superclass constructor argument as
the actual name:

classdef Boolean < logical
enumeration

No (0)
Yes (1)
off (0)
on (1)

end
end

For example, the actual name of an instance of the Boolean.off enumeration
member is No:

12-18

Enumerations Derived from Built-In Types

a = Boolean.No

a =

No

b = Boolean.off

b =

No

Superclass Constructor Returns Underlying Value
The actual underlying value associated with an enumeration member is the
value returned by the built-in superclass. For example, consider the Boolean
class defined with constructor arguments that are of class double:

classdef Boolean < logical
enumeration

No (0)
Yes (100)

end
end

This class derives from the built-in logical class. Therefore, underlying
values for an enumeration member depend only on what value logical
returns when passed that value:

a = Boolean.Yes
a =

Yes

logical(a)

ans =

1

12-19

12 Enumerations

Subclassing a Numeric Built-In Class
The FlowRate enumeration class defines three members, Low, Medium, and
High.

classdef FlowRate < int32
enumeration

Low (10)
Medium (50)
High (100)

end
end

Referencing an instance of an enumeration member:

setFlow = FlowRate.Medium;

returns an instance that is the result of MATLAB calling the default
constructor with the argument value of 50. MATLAB passes this argument to
the first superclass constructor (int32(50) in this case), which results in an
underlying value of 50 as a 32-bit integer for the FlowRate.Medium member.

Because FlowRate subclasses a MATLAB built-in numeric class (int32),
it cannot define properties. However FlowRate inherits int32 methods
including a converter method, which programs can use to obtain the
underlying value:

setFlow = FlowRate.Medium;
int32(setFlow)
ans =

50

Default Converter
All enumeration classes based on built-in classes have a default conversion
method to convert built-in data to an enumeration member of that class.
For example:

a = Boolean(1)

a =

12-20

Enumerations Derived from Built-In Types

Yes

An enumerated class also accepts enumeration members of its own class
as input arguments:

Boolean(a)

ans =

Yes

Nonscalar inputs to the converter method return an object of the same size:

Boolean([0,1])

ans =

No Yes

Create an empty enumeration array using the empty static method:

Boolean.empty

ans =

0x0 empty Boolean enumeration.

12-21

12 Enumerations

Mutable (Handle) vs. Immutable (Value) Enumeration
Members

In this section...

“Basic Knowledge” on page 12-22

“Selecting Handle- or Value-Based Enumerations” on page 12-22

“Value-Based Enumeration Classes” on page 12-22

“Handle-Based Enumeration Classes” on page 12-24

“Using Enumerations to Represent a State” on page 12-28

Basic Knowledge
The material presented in this section builds on an understanding of the
information provided in the following sections.

• “Comparing Handle and Value Classes” on page 5-2

• enumeration function displays enumeration names

See for general information about these two kinds of classes.

Selecting Handle- or Value-Based Enumerations
Use a handle enumeration when you want to enumerate a set of objects whose
state might change over time. Use a value enumeration to enumerate a set
of abstract (and immutable) values.

Value-Based Enumeration Classes
A value-based enumeration class has a fixed set of specific values. You cannot
modify these values by changing the values of properties because doing so
expands or changes the fixed set of values for this enumeration class.

12-22

Mutable (Handle) vs. Immutable (Value) Enumeration Members

Inherited Property SetAccess Must Be Immutable
Value-based enumeration class implicitly define the SetAccess attributes of
all properties as immutable. You cannot set the SetAccess attribute to any
other value.

However, all superclass properties must explicitly define property SetAccess
as immutable. See “Property Attributes” on page 6-8 for more information
on property attributes.

Enumeration Members Remain Constant
When you create an instance of a value-based enumeration class, this
instance is unique until the class is cleared and reloaded. For example, given
the following class:

classdef WeekDays
enumeration

Monday, Tuesday, Wednesday, Thursday, Friday
end

end

MATLAB considers a and b as equivalent:

a = WeekDays.Monday;
b = WeekDays.Monday;
isequal(a,b)
ans =

1

a == b
ans =

1

Enumeration Member Properties Remain Constant
Value-based enumeration classes that define properties are immutable. For
example, the Colors enumeration class associates RGB values with color
names.

12-23

12 Enumerations

classdef Colors
properties

R = 0;
G = 0;
B = 0;

end
methods
function c = Colors(r, g, b)

c.R = r; c.G = g; c.B = b;
end

end
enumeration
Red (1, 0, 0)
Green (0, 1, 0)
Blue (0, 0, 1)

end
end

The constructor assigns the input arguments to R, G, and B properties:

red = Colors.Red;

You cannot change a property value:

red.G = 1;
Setting the 'G' property of the 'Colors' class is not allowed.

Handle-Based Enumeration Classes
Handle-based enumeration classes that define properties are mutable. Derive
enumeration classes from the handle class when you must be able to change
property values on instances of that class.

Note You cannot derive an enumeration class from matlab.mixin.Copyable
because the number of instances you can create are limited to the ones defined
inside the enumeration block.

12-24

Mutable (Handle) vs. Immutable (Value) Enumeration Members

An Enumeration Member Remains Constant
Given a handle-based enumeration class with properties, changing the
property value of an instance causes all references to that instance to reflect
the changed value.

For example, the HandleColors enumeration class associates RGB values
with color names, the same as the Colors class in the previous example.
However, HandleColors derives from handle:

classdef HandleColors < handle
% Enumeration class derived from handle

properties
R = 0;
G = 0;
B = 0;

end

methods
function c = HandleColors(r, g, b)

c.R = r; c.G = g; c.B = b;
end

end

enumeration
Red (1, 0, 0)

... % Other colors omitted
end

end

Create an instance of HandleColors.Red and return the value of the R
property:

a = HandleColors.Red;
a.R

ans =

1

12-25

12 Enumerations

MATLAB constructs the HandleColors.Red enumeration member, which sets
the R property to 1, the G property to 0, and the B property to 0.

Change the value of the R property to .8:

a.R = .8;

After setting the value of the R property to .8, create another instance, b,
of HandleColors.Red:

b = HandleColors.Red;

b.R

ans =

0.8000

The value of the R property of the newly created instance is also 0.8000.
The MATLAB session has only one value for any enumeration member at
any given time.

Clearing the workspace variables does not change the current definition of
the enumeration member HandleColors.Red:

clear
a = HandleColors.Red;
a.R

ans =

0.8000

Clear the class to reload the definition of the HandleColors class (see clear
classes):

clear classes
a = HandleColors.Red;

a.R

12-26

Mutable (Handle) vs. Immutable (Value) Enumeration Members

ans =

1

If you do not want to allow reassignment of a given property value, set that
property’s SetAccess attribute to immutable.

See “Property Attributes” on page 6-8 for more information about property
attributes.

Equality of Handle-Based Enumerations
Suppose you assign two variables to a particular enumeration member:

a = HandleColors.Red;
b = HandleColors.Red;

You can compare a and b using isequal:

>> isequal(a,b)

ans =

1

The property values of a and b are the same, so isequal returns true.
However, unlike nonenumeration handle classes, a and b are the same handle
because there is only one enumeration member. Determine handle equality
using == (the handle eq method).

>> a == b

ans =

1

See the handle eq method for information on how isequal and == differ when
used with handles.

12-27

12 Enumerations

Using Enumerations to Represent a State
The MachineState class defines two enumeration members to represent the
state of a machine, either running or not running.

classdef MachineState
enumeration

Running
NotRunning

end
end

The Machine class represents a machine with start and stop operations. The
MachineState enumerations are easy to work with because of their eq and
char methods, and they result in code that is easy to read.

classdef Machine < handle
properties (SetAccess = Private)

State = MachineState.NotRunning;
end

methods
function start(machine)

if machine.State == MachineState.NotRunning
machine.State = MachineState.Running;

end
disp (machine.State.char)

end
function stop(machine)

if machine.State == MachineState.Running
machine.State = MachineState.NotRunning;

end
disp (machine.State.char)

end
end

end

Create a Machine object and call start and stop methods:

% Create a Machine object
>> m = Machine;
% Start the machine

12-28

Mutable (Handle) vs. Immutable (Value) Enumeration Members

>> m.start
Running
% Stop the machine
>> m.stop
NotRunning

12-29

12 Enumerations

Enumerations That Encapsulate Data

In this section...

“Basic Knowledge” on page 12-30

“Store Data in Properties” on page 12-30

Basic Knowledge
The material presented in this section builds on an understanding of the
information provided in the following sections.

• “Fundamental MATLAB Classes” for information on MATLAB built-in
classes.

• enumeration function displays enumeration names

Store Data in Properties

Note Enumeration classes that subclass built-in numeric or logical classes
cannot define or inherit properties. See “Enumerations Derived from Built-In
Types” on page 12-16 for more information on this kind of enumeration class.

Define properties in an enumeration class if you want to associate specific data
with enumeration members, but do not need to inherit arithmetic, ordering,
or other operations that MATLAB defines for specific built-in classes.

Representing Colors
Suppose you want to use a particular set of colors in all your graphs. You can
define an enumeration class to represent the RGB values of the colors in your
color set. The Colors class defines names for the colors, each of which uses
the RGB values as arguments to the class constructor:

classdef Colors
properties

R = 0;
G = 0;
B = 0;

12-30

Enumerations That Encapsulate Data

end
methods

function c = Colors(r, g, b)
c.R = r; c.G = g; c.B = b;

end
end
enumeration

Blueish (18/255,104/255,179/255)
Reddish (237/255,36/255,38/255)
Greenish (155/255,190/255,61/255)
Purplish (123/255,45/255,116/255)
Yellowish (1,199/255,0)
LightBlue (77/255,190/255,238/255)

end
end

Suppose you want to specify the new shade of red named Reddish:

a = Colors.Reddish;
a.R

ans =

0.9294

a.G

ans =

0.1412

a.B

ans =

0.1490

Use these values by accessing the enumeration member’s properties. For
example, the myPlot function accepts a Colors enumeration member as an

12-31

12 Enumerations

input argument and accesses the RGB values defining the color from the
property values.

function h = myPlot(x,y,LineColor)
% Simple plotting function
h = line('XData',x,'YData',y);
r = LineColor.R;
g = LineColor.G;
b = LineColor.B;
set(h,'Color',[r g b])

end

Create a plot using a reddish color line:

r = Colors.Reddish;
h = myPlot(1:10,1:10,r);

The Colors class encapsulates the definitions of a standard set of colors.
These definitions can change in the Colors class without affecting functions
that use the Colors enumerations.

Enumerations Defining Categories
Suppose the Cars class defines categories used to inventory automobiles. The
Cars class derives from the CarPainter class, which derives from handle.
The abstract CarPainter class defines a paint method, which modifies the
Color property if a car is painted another color.

The Cars class uses Colors enumerations to specify a finite set of available
colors. The exact definition of any given color can change independently of
the Cars class.

classdef Cars < CarPainter
enumeration

Hybrid (2,'Manual',55,Colors.Reddish)
Compact(4,'Manual',32,Colors.Greenish)
MiniVan(6,'Automatic',24,Colors.Blueish)
SUV (8,'Automatic',12,Colors.Yellowish)

end
properties (SetAccess = private)

Cylinders

12-32

Enumerations That Encapsulate Data

Transmission
MPG
Color

end
methods

function obj = Cars(cyl,trans,mpg,colr)
obj.Cylinders = cyl;
obj.Transmission = trans;
obj.MPG = mpg;
obj.Color = colr;

end
function paint(obj,colorobj)

if isa(colorobj,'Colors')
obj.Color = colorobj;

else
[~,cls] = enumeration('Colors');
disp('Not an available color')
disp(cls)

end
end

end
end

The CarPainter class requires its subclasses to define a method called paint:

classdef CarPainter < handle
methods (Abstract)

paint(carobj,colorobj)
end

end

Suppose you define an instance of the Cars class:

c1 = Cars.Compact;

The color of this car is Greenish, as defined by the Colors.Greenish
enumeration:

c1.Color

12-33

12 Enumerations

ans =

Greenish

Use the paint method to change the car color:

c1.paint(Colors.Reddish)
c1.Color

ans =

Reddish

12-34

Saving and Loading Enumerations

Saving and Loading Enumerations

In this section...

“Basic Knowledge” on page 12-35

“Built-In and Value-Based Enumeration Classes” on page 12-35

“Simple and Handle-Based Enumeration Classes” on page 12-35

“Causes: Loading as Struct Instead of Object” on page 12-36

Basic Knowledge
See the save and load functions and “Understanding the Save and Load
Process” on page 11-2 for general information on saving and loading objects.

See the enumeration function to list enumeration names.

Built-In and Value-Based Enumeration Classes
When you save enumerations that derive from built-in classes or that are
value-based classes with properties, MATLAB saves the names of the
enumeration members and the definition of each member.

When loading these types of enumerations, MATLAB preserves names over
underlying values. If the saved named value is different from the current
class definition, MATLAB uses the value defined in the current class, and
then issues a warning.

Simple and Handle-Based Enumeration Classes
When you save simple enumerations (those having no properties, superclasses,
or values associated with the member names) or those enumerations derived
from the handle class, MATLAB saves the names and any underlying values.

However, when loading these types of enumerations, MATLAB does not check
the values associated with the names in the current class definition. This
behavior results from the fact that simple enumerations have no underlying
values and handle-based enumerations can legally have values that are
different than those defined by the class.

12-35

12 Enumerations

Causes: Loading as Struct Instead of Object
The addition of a new named value or a new property made to a class
subsequent to saving an enumeration does not trigger a warning during load.

If there are changes to the enumeration class definition that do not prevent
MATLAB from loading the object (that is, all of the named values in the
MAT-File are present in the modified class definition), then MATLAB issues a
warning that the class has changed and loads the enumeration.

In the following cases, MATLAB issues a warning and loads as much of the
saved data as possible as a struct:

• MATLAB cannot find the class definition

• The class is no longer an enumeration class

• MATLAB cannot initialize the class

• There is one or more enumeration member in the loaded enumeration that
is not in the class definition

• For value-based enumerations with properties, a property exists in the file,
but is not present in the class definition

Struct Fields
The returned struct has the following fields:

• ValueNames — A cell array of strings, one per unique value in the
enumeration array.

• Values— An array of the same dimension as ValueNames containing the
corresponding values of the enumeration members named in ValueNames.
Depending on the kind of enumeration class, Values can be one of the
following:

- If the enumeration class derives from a built-in class, the array is of the
built-in class and the values in the array are the underlying values of
each enumeration member.

- Otherwise, a struct array representing the property name — property
values pairs of each enumeration member. For simple and handle-based
enumerations, the struct array has no fields.

12-36

Saving and Loading Enumerations

• ValueIndices — a uint32 array of the same size as the original
enumeration. Each element is an index into the ValueNames and Values
arrays. The content of ValueIndices represents the value of each object
in the original enumeration array.

12-37

12 Enumerations

12-38

13

Constant Properties

13 Constant Properties

Properties with Constant Values

In this section...

“Defining Named Constants” on page 13-2

“Constant Property Assigned a Handle Object” on page 13-4

“Constant Property Assigned Any Class Instance” on page 13-4

Defining Named Constants
Use constant properties to define constant values that you can access by
name. Create a class with constant properties by declaring the Constant
attribute in the property blocks. Setting the Constant attribute means that,
once initialized to the value specified in the property block, the value cannot
be changed.

Assigning Values to Constant Properties
Assign any value to a Constant property, including a MATLAB expression.
For example:

classdef NamedConst
properties (Constant)

R = pi/180;
D = 1/NamedConst.R;
AccCode = '0145968740001110202NPQ';
RN = rand(5);

end
end

MATLAB evaluates the expressions when loading the class (when you first
reference a constant property from that class). Therefore, the values MATLAB
assigns to RN are the result of a single call to the rand function and do not
change with subsequent references to NamedConst.RN. Calling clear classes
causes MATLAB to reload the class and reinitialize the constant properties.

Referencing Constant Properties
Refer to the constant using the class name and the property name:

13-2

Properties with Constant Values

ClassName.PropName

For example, to use the NamedConst class defined in the previous section,
reference the constant for the degree to radian conversion, R:

radi = 45*NamedConst.R

radi =

0.7854

Constants In Packages
To create a library for constant values that you can access by name, first
create a package folder, and then define the various classes to organize
the constants you want to provide. For example, to implement a set of
constants that are useful for making astronomical calculations, define a
AstroConstants class in a package called constants:

+constants/AstroConstants/AstroConstants.m

The class defines a set of Constant properties with values assigned:

classdef AstroConstants
properties (Constant)
C = 2.99792458e8; % m/s
G = 6.67259; % m/kgs
Me = 5.976e24; % Earth mass (kg)
Re = 6.378e6; % Earth radius (m)
end

end

To use this set of constants, reference them with a fully qualified class name.
For example, the following function uses some of the constants defined in
AstroContants:

function E = energyToOrbit(m,r)

E = constants.AstroConstants.G * constants.AstroConstants.Me * m * ...

(1/constants.AstroConstants.Re-0.5*r);

end

13-3

13 Constant Properties

Importing the package into the function eliminates the need to repeat the
package name (see import):

function E = energyToOrbit(m,r)
import constants.*;
E = AstroConstants.G * AstroConstants.Me * m * ...

(1/AstroConstants.Re - 0.5 * r);
end

Constant Property Assigned a Handle Object
If a class defines a constant property with a value that is a handle object, you
can assign values to the handle object’s properties. However, you must create
a local variable to access the handle object.

For example, the ConstMapClass class defines a constant property. The value
of the constant property is a handle object (a containers.Map object).

classdef ConstMapClass < handle
properties (Constant)

ConstMapProp = containers.Map;
end

end

To assign the current date to the Date key, first return the handle from the
constant property, and then make the assignment using the local variable on
the left side of the assignment statement:

localMap = ConstantMapClass.ConstMapProp
localMap('Date') = datestr(clock);

You cannot use a reference to a constant property on the left side of an
assignment statement. For example, MATLAB interprets the following
statement as the creation of a struct named ConstantMapClass with a
field ConstMapProp:

ConstantMapClass.ConstMapProp('Date') = datestr(clock);

Constant Property Assigned Any Class Instance
You can assign an instance of the defining class to a constant property.
MATLAB creates the instance assigned to the constant property when loading

13-4

Properties with Constant Values

the class. You can use this technique only when the defining class is a handle
class.

The MyProject is an example of such a class:

classdef MyProject < handle
properties (Constant)

ProjectInfo = MyProject;
end
properties

Date
Department
ProjectNumber

end
methods (Access = private)

function obj = MyProject
obj.Date = datestr(clock);
obj.Department = 'Engineering';
obj.ProjectNumber = 'P29.367';

end
end

end

Reference property data via the Constant property:

MyProject.ProjectInfo.Date

ans =

18-Apr-2002 09:56:59

Because MyProject is a handle class, you can get the handle to the instance
that is assigned to the constant property:

p = MyProject.ProjectInfo;

Access the data in the MyProject class using this handle:

p.Department

ans =

13-5

13 Constant Properties

Engineering

Modify the nonconstant properties of the MyProject class using this handle:

p.Department = 'Quality Assurance';

p is a handle to the instance of MyProject that is assigned to the ProjectInfo
constant property:

MyProject.ProjectInfo.Department

ans =

Quality Assurance

Clearing the class results in the assignment of a new instance of MyProject to
the ProjectInfo property.

clear MyProject
MyProject.ProjectInfo.Department

ans =

Engineering

You can assign an instance of the defining class as the default value of a
property only when the property is declared as Constant

13-6

14

Information from Class
Metadata

• “Class Metadata” on page 14-2

• “Inspecting Class and Object Metadata” on page 14-5

• “Finding Objects with Specific Values” on page 14-9

• “Getting Information About Properties” on page 14-14

• “Find Default Values in Property Metadata” on page 14-21

14 Information from Class Metadata

Class Metadata

In this section...

“What Is Class Metadata?” on page 14-2

“The meta Package” on page 14-2

“Metaclass Objects” on page 14-3

What Is Class Metadata?
Class metadata is information about class definitions that is available from
instances of metaclasses. Use metaclass objects to obtain information about
class definitions without the need to create instances of the class itself.

Each block in a class definition has an associated metaclass that defines the
attributes for that block. Each attribute corresponds to a property in the
metaclass. An instance of a metaclass has values assigned to each property
that correspond to the values of the attributes of the associated class block.

Metadata enables the programmatic inspection of classes. Tools such as
property inspectors, debuggers, and so on, use these techniques.

The meta Package
The meta package contains metaclasses that MATLAB uses for the definition
of classes and class components. The class name indicates the component
described by the metaclass:

meta.package
meta.class
meta.property
meta.DynamicProperty
meta.EnumeratedValue
meta.method
meta.event

Each metaclass has properties, methods, and events that contain information
about the class or class component. See meta.package, meta.class,

14-2

Class Metadata

meta.property, meta.DynamicProperty, meta.EnumeratedValue,
meta.method and meta.event for more information on these metaclasses.

Metaclass Objects

Creating Metaclass Objects
You cannot instantiate metaclasses directly by calling the respective class
constructor. Create metaclass objects from class instances or from the class
name.

• ?ClassName — Returns a meta.class object for the named class. Use
meta.class.fromName with class names stored as characters in variables.

• meta.class.fromName('ClassName')— returns the meta.class object for
the named class (meta.class.fromName is a meta.class method).

• metaclass(obj) — Returns a metaclass object for the class instance
(metaclass)

% create metaclass object from class name using the ? operator
mobj = ?classname;
% create metaclass object from class name using the fromName method
mobj = meta.class.fromName('classname');
% create metaclass object from class instance
obj = myClass;
mobj = metaclass(obj);

The metaclass function returns the meta.class object (that is, an
object of the meta.class class). You can obtain other metaclass objects
(meta.property, meta.method, and so on) from the meta.class object.

Note Metaclass is a term used here to refer to all of the classes in the meta
package. meta.class is a class in the meta package whose instances contain
information about MATLAB classes. Metadata is information about classes
contained in metaclasses.

14-3

14 Information from Class Metadata

Metaclass Object Lifecycle
When you change a class definition, MATLAB attempts to reload the class
definition. If instances of the class exist, MATLAB cannot load the new class
definition until you delete those instances.

However, MATLAB does not allow existing metaclass objects to prevent the
reloading of a new class definition. If you change a class definition while
metaclass objects of that class exist, MATLAB deletes the metaclass objects
and their handles become invalid.

See “Modifying and Reloading Classes” on page 3-43 for information on how
to modify and reload classes.

Using Metaclass Objects
Here are ways to access the information in metaclass objects:

• Obtain a meta.class object from a class definition (using ?) or from a
class instance (using metaclass).

• Use the meta.class properties, methods, and events to obtain
information about the class or class instance from which you obtained the
meta.class object. For example, get other metaclass objects, such as the
meta.properties objects defined for each of the class properties.

See the following sections for examples that show how to use metadata:

• “Inspecting Class and Object Metadata” on page 14-5

• “Finding Objects with Specific Values” on page 14-9

• “Getting Information About Properties” on page 14-14

• “Find Default Values in Property Metadata” on page 14-21

14-4

Inspecting Class and Object Metadata

Inspecting Class and Object Metadata

In this section...

“Inspecting a Class” on page 14-5

“Metaclass EnumeratedValues Property” on page 14-7

Inspecting a Class
The EmployeeData class is a handle class with two properties, one of which
has private Access and defines a set access method.

classdef EmployeeData < handle
properties

EmployeeName
end
properties (Access = private)

EmployeeNumber
end
methods

function obj = EmployeeData(name,ss)
if nargin > 0

obj.EmployeeName = name;
obj.EmployeeNumber = ss;

end
end
function set.EmployeeName(obj,name)

if ischar(name)
obj.EmployeeName = name;

else
error('Employee name must be a text string')

end
end

end
end

Inspecting the Class Definition
Using the EmployeeData class, create a meta.class object using the ?
operator:

14-5

14 Information from Class Metadata

mc = ?EmployeeData;

Determine from what classes EmployeeData derives:

a = mc.SuperclassList; % a is an array of meta.class objects
a.Name

ans =

handle

The EmployeeData class has only one superclass. For classes having more
than one superclass, a would contain a meta.class object for each superclass.
Use an indexed reference to refer to any particular superclass:

a(1).Name

or, directly from mc:

mc.SuperclassList(1).Name

ans =

handle

Inspecting Properties
Find the names of the properties defined by the EmployeeData class.
First obtain an array of meta.properties objects from the meta.class
PropertyList property.

mpArray = mc.PropertyList;

The length of mpArray indicates there are two meta.property objects, one for
each property defined by the EmployeeData class:

length(mpArray)
ans =

2

Now get a meta.property object from the array:

14-6

Inspecting Class and Object Metadata

prop1 = mpArray(1);
prop1.Name

ans =

EmployeeName

The Name property of the meta.property object identifies the class property
represented by that meta.property object.

Query other meta.property object properties to determine the attributes of
the EmployeeName properties.

Inspecting an Instance of a Class
Create an EmployeeData object and determine property access settings:

EdObj = EmployeeData('My Name',1234567);

mcEdObj = metaclass(EdObj);

mpArray = mcEdObj.PropertyList;

EdObj.(mpArray(1).Name) % Dynamic field names work with objects

ans =

My Name

EdObj.(mpArray(2).Name)

Getting the 'EmployeeNumber' property of the 'EmployeeData' class is not allowed.

mpArray(2).GetAccess

ans =

private

Obtain a function handle to the property set access function:

mpArray(1).SetMethod

ans =

@D:\MyDir\@EmployeeData\EmployeeData.m>EmployeeData.set.EmployeeName

Metaclass EnumeratedValues Property
The meta.class EnumeratedValues property contains an array of
meta.EnumeratedValue objects, one for each enumeration member. Use the
meta.EnumeratedValue Name property to obtain the enumeration member
names defined by an enumeration class. For example, given the WeekDays
enumeration class:

14-7

14 Information from Class Metadata

classdef WeekDays
enumeration

Monday, Tuesday, Wednesday, Thursday, Friday
end

end

Query enumeration names from the meta.class object:

mc = ?WeekDays;
mc.EnumerationMemberList(2).Name

ans =

Tuesday

14-8

Finding Objects with Specific Values

Finding Objects with Specific Values

In this section...

“Find Handle Objects” on page 14-9

“Find by Attribute Settings” on page 14-10

Find Handle Objects
Use the handle class findobj method to find objects that have properties
with specific values. For example, the following class defines a PhoneBook
object to represent a telephone book entry in a data base. The PhoneBook
class subclasses the dynamicprops class, which derives from handle.

classdef PhoneBook < dynamicprops
properties

Name
Address
Number

end
methods

function obj = PhoneBook(n,a,p)
obj.Name = n;
obj.Address = a;
obj.Number = p;

end
end

end

Assume three of the PhoneBook entries in the database are:

PB(1) = PhoneBook('Nancy Vidal','123 Washington Street','5081234567');

PB(2) = PhoneBook('Nancy Vidal','123 Main Street','5081234568');

PB(3) = PhoneBook('Nancy Wong','123 South Street','5081234569');

One of these three PhoneBook objects has a dynamic property:

PB(2).addprop('HighSpeedInternet');
PB(2).HighSpeedInternet = '1M';

14-9

14 Information from Class Metadata

Find Property/Value Pairs
Find the object representing employee Nancy Wong and display the name and
number by concatenating the strings:

NW = findobj(PB,'Name','Nancy Wong');

[NW.Name,' - ',NW.Number]

ans =

Nancy Wong - 5081234569

Find Objects with Specific Property Names
Search for objects with specific property names using the -property option:

H = findobj(PB,'-property','HighSpeedInternet');
H.HighSpeedInternet

ans =

1M

The -property option enables you to omit the value of the property and
search for objects using only the property name.

Using Logical Expressions
Search for specific combinations of property names and values:

H = findobj(PB,'Name','Nancy Vidal','-and','Address','123 Main Street');

H.Number

ans =

5081234568

Find by Attribute Settings
All metaclasses derive from the handle class so you can use the handle
findobj method to find class members that have specific attribute settings.

14-10

Finding Objects with Specific Values

For example, find the abstract methods in a class definition by searching
the meta.class MethodList for meta.method objects with their Abstract
property set to true:

% Use class name in string form because class is abstract
mc = meta.class.fromName('ClassName');
% Search list of meta.method objects for those
% methods that have their Abstract property set to true
absMethods = findobj(mc.MethodList,'Abstract',true);
methodNames = {absMethods.Name};

The cell array, methodNames, contains the names of the abstract methods
in the class.

Find Properties That Have Public Get Access
Find the names of all properties in the containers.Map class that have public
GetAccess:

• Get the meta.class object

• Use findobj to search the array of meta.property objects

mc = ?containers.Map;

% findobj returns an array of meta.property objects

% use braces to convert the comman separated list to a cell array

mpArray = findobj(mc.PropertyList,'GetAccess','public');

% create cell array of property names

names = {mpArray.Name};

Display the names of all containers.Map properties that have public
GetAccess:

celldisp(names)

names{1} =

Count

names{2} =

14-11

14 Information from Class Metadata

KeyType

names{3} =

ValueType

Find Static Methods
Determine if any containers.Map class methods are static:

isempty(findobj([mc.MethodList(:)],'Static',true))

ans =

0

findobj returns an array of meta.method objects for the static methods. In
this case, isempty returns false, indicating there are static methods defined
by this class.

You can get the names of any static methods from the meta.method array:

staticMethInfo = findobj([mc.MethodList(:)],'Static',true);

staticMethodInfo(:).Name

ans =

empty

The name of the static method (there is only one in this case) is empty. Here is
the information from the meta.method object for the empty method:

staticMethodInfo

meta.method handle
Package: meta

Properties:
Name: 'empty'

14-12

Finding Objects with Specific Values

Description: 'Returns an empty object array of the given size'
DetailedDescription: ''

Access: 'public'
Static: 1

Abstract: 0
Sealed: 0
Hidden: 1

InputNames: {'varargin'}
OutputNames: {'E'}

DefiningClass: [1x1 meta.class]

14-13

14 Information from Class Metadata

Getting Information About Properties

In this section...

“The meta.property object” on page 14-14

“How to Find Properties with Specific Attributes” on page 14-18

The meta.property object
The meta.property class is useful for determining the settings of property
attributes. The writable properties of a meta.property object correspond
to the attributes of the associated property. The values of the writable
meta.property properties correspond to the attribute setting specified in the
class definition.

For example, create a default containers.Map object and use the handle
findprop method to get the meta.property object for the Count property:

mp = findprop(containers.Map,'Count')

mp =

meta.property handle
Package: meta

Properties:
Name: 'Count'

Description: 'Number of pairs in the collection'
DetailedDescription: ''

GetAccess: 'public'
SetAccess: 'private'
Dependent: 1
Constant: 0
Abstract: 0

Transient: 1
Hidden: 0

GetObservable: 0
SetObservable: 0

AbortSet: 0

14-14

Getting Information About Properties

GetMethod: []
SetMethod: []

DefiningClass: [1x1 meta.class]

The preceding meta.property display shows that the default Map object
Count property has public GetAccess and private SetAccess, is Dependent,
and Transient. See “Table of Property Attributes” on page 6-8 for a list of
property attributes.

If you are working with a class that is not a handle class, get the
meta.property objects from the meta.class object. All metaclasses are
subclasses of the handle class. Use the metaclass function if you have an
instance or the ? operator with the class name:

mc = ?containers.Map

mc =

meta.class handle
Package: meta

Properties:
Name: 'containers.Map'

Description: 'MATLAB Map Container'
DetailedDescription: 'MATLAB Map Container'

Hidden: 0
Sealed: 0

ConstructOnLoad: 1
HandleCompatible: 1
InferiorClasses: {0x1 cell}

ContainingPackage: [1x1 meta.package]
PropertyList: [4x1 meta.property]

MethodList: [35x1 meta.method]
EventList: [1x1 meta.event]

EnumerationMemberList: [0x1 meta.EnumeratedValue]
SuperclassList: [1x1 meta.class]

The meta.class object property named PropertyList contains an
array of meta.property objects, one for each property defined by the

14-15

14 Information from Class Metadata

containers.Map class. For example, the name of the property associated with
the meta.property object in element 1 is:

mc.PropertyList(1).Name

ans =

Count

The meta.class object contains a meta.property object for hidden properties
too. Compare the result with the properties function, which returns only
public properties:

properties('containers.Map')

Properties for class containers.Map:

Count
KeyType
ValueType

The serialization property is Hidden and has its GetAccess and SetAccess
attributes set to private. Therefore, the properties function does not
list it. However, you can get information about this property from its
associated meta.property object (which is the fourth element in the array of
meta.property objects in this case):

mc.PropertyList(4)

ans =

meta.property handle
Package: meta

Properties:
Name: 'serialization'

Description: 'Serialization property.'
DetailedDescription: ''

GetAccess: 'private'
SetAccess: 'private'
Dependent: 0

14-16

Getting Information About Properties

Constant: 0
Abstract: 0

Transient: 0
Hidden: 1

GetObservable: 0
SetObservable: 0

AbortSet: 0
GetMethod: []
SetMethod: []

DefiningClass: [1x1 meta.class]

Indexing Metaclass Objects
Access other metaclass objects directly from the meta.class object properties.
For example, the statement:

mc = ?containers.Map;

returns a meta.class object:

class(mc)

ans =

meta.class

Referencing the PropertyList meta.class property returns an array with
one meta.property object for each property of the containers.Map class:

class(mc.PropertyList)

ans =

meta.property

Each array element is a single meta.property object:

mc.Properties(1)

ans =

[1x1 meta.property]

14-17

14 Information from Class Metadata

The Name property of the meta.property object contains a character string
that is the name of the property:

class(mc.PropertyList(1).Name)

ans =

char

Apply standard MATLAB indexing to access information in metaclass objects.

For example, because the meta.class PropertyList property contains an
array of meta.property objects, the following expression accesses the first
meta.property object in this array and returns the first and last (C and t)
letters of the string contained in the meta.property Name property.

mc.PropertyList(1).Name([1 end])

ans =

Ct

How to Find Properties with Specific Attributes
This example implements a function that finds properties with specific
attribute settings. For example, find objects that define constant properties
(Constant attribute set to true) or determine what properties are read-only
(GetAccess = public, SetAccess = private). The findAttrValue function
returns a cell array of property names that set the specified attribute.

This function accesses information from metaclasses using these techniques:

• If input argument, obj, is a string, use the meta.class.fromName static
method to get the meta.class object.

• If input argument, obj, is an object, use the metaclass function to get
the meta.class object.

• Every property has an associated meta.property object. Obtain these
objects from the meta.class PropertyList property.

14-18

Getting Information About Properties

• Use the handle class findprop method to determine if the requested
property attribute is a valid attribute name. All property attributes
are properties of the meta.property object. The statement,
findobj(mp,'PropertyName') determines whether the meta.property
object, mp, has a property called PropertyName.

• Reference meta.property object properties using dynamic field names.
For example, if attrName = 'Constant', then MATLAB converts the
expression mp.(attrName) to mp.Constant

• The optional third argument enables you to specify the value of attributes
whose values are not logical true or false (such as GetAccess and
SetAccess).

function cl_out = findAttrValue(obj,attrName,varargin)

% Determine if first input is object or class name

if ischar(obj)

mc = meta.class.fromName(obj);

elseif isobject(obj)

mc = metaclass(obj);

end

% Initialize and preallocate

ii = 0; numb_props = length(mc.PropertyList);

cl_array = cell(1,numb_props);

% For each property, check the value of the queried attribute

for c = 1:numb_props

% Get a meta.property object from the meta.class object

mp = mc.PropertyList(c);

% Determine if the specified attribute is valid on this object

if isempty (findprop(mp,attrName))

error('Not a valid attribute name')

end

attrValue = mp.(attrName);

% If the attribute is set or has the specified value,

% save its name in cell array

14-19

14 Information from Class Metadata

if attrValue

if islogical(attrValue) || strcmp(varargin{1},attrValue)

ii = ii + 1;

cl_array(ii) = {mp.Name};

end

end

end

% Return used portion of array

cl_out = cl_array(1:ii);

end

Find Property Attributes
Suppose you have the following containers.Map object:

mapobj =
containers.Map({'rose','bicycle'},{'flower','machine'});

Find properties with private SetAccess:

findAttrValue(mapobj,'SetAccess','private')

ans =

'Count' 'KeyType' 'ValueType' 'serialization'

Find properties with public GetAccess:

findAttrValue(mapobj,'GetAccess','public')

ans =

'Count' 'KeyType' 'ValueType'

14-20

Find Default Values in Property Metadata

Find Default Values in Property Metadata

In this section...

“meta.property Object” on page 14-21

“meta.property Data” on page 14-21

meta.property Object
Class definitions can specify explicit default values for properties (see
“Defining Default Values” on page 3-11). You can determine if a class defines
explicit default values for a property and what the value of the default is from
the property’s meta.property object.

meta.property Data
Obtain the default value of a property from the property’s associated
meta.property object. The meta.class object for a class contains a
meta.property object for every property defined by the class, including
properties with private and protected access. For example:

mc = ?MException; % meta.class object for MException class
mp = mc.PropertyList; % Array of meta.property objects
mp(1) % meta.property object for 'type' property
ans =

meta.property handle
Package: meta

Properties:
Name: 'type'

Description: 'Type of error reporting'
DetailedDescription: ''

GetAccess: 'private'
SetAccess: 'private'
Dependent: 0
Constant: 0
Abstract: 0

Transient: 0

14-21

14 Information from Class Metadata

Hidden: 0
GetObservable: 1
SetObservable: 1

AbortSet: 0
GetMethod: []
SetMethod: []

HasDefault: 1
DefaultValue: {}

DefiningClass: [1x1 meta.class]

Two meta.property object properties provide information on default values:

• HasDefault — True if class specifies a default value for the property,
false if it does not.

• DefaultValue— Contains the default value, if the class defines a default
value for the property.

These properties provide a programmatic way to obtain property default
values without reading class definition files. Use these meta.property object
properties to obtain property default values for built-in classes and classes
defined in MATLAB code.

Querying a Default Value
The procedure for querying a default value involves:

1 Getting the meta.property object for the property whose default value
you want to query.

2 Testing the logical value of the meta.property HasDefault property to
determine if the property defines a default value. MATLAB returns an
error when you query the DefaultValue property if the class does not
define a default value for the property.

3 Obtaining the default value from the meta.property DefaultValue
property if the HasDefault value is true.

Use the ? operator, the metaclass function, or the meta.class.fromName
static method (works with string variable) to obtain a meta.class object.
The meta.class object PropertyList property contains an array of

14-22

Find Default Values in Property Metadata

meta.property objects. Identify which property corresponds to which
meta.property object using the meta.property Name property.

For example, this class defines properties with default values:

classdef MyDefs
properties

Material = 'acrylic';
InitialValue = 1.0;

end
end

Follow these steps to obtain the default value defined for the Material
property. Include any error checking that is necessary for your application.

1 Get the meta.class object for the class:

mc = ?MyDefs;

2 Get an array of meta.property objects from the meta.class PropertyList
property:

mp = mc.PropertyList;

3 The length of the mp array equals the number of properties. You can use the
meta.property Name property to find the property of interest:

for k = 1:length(mp)
if (strcmp(mp(k).Name,'Material')

4 Before querying the default value of the Material property, test the
HasDefault meta.property to determine if MyClass defines a default
property for this property:

if mp(k).HasDefault
dv = mp(k).DefaultValue;

end
end

end

14-23

14 Information from Class Metadata

The DefaultValue property is read only. Changing the default value in the
class definition changes the value of DefaultValue property. You can query
the default value of a property regardless of its access settings.

Abstract and dynamic properties cannot define default values. Therefore,
MATLAB returns an error if you attempt to query the default value of
properties with these attributes. Always test the logical value of the
meta.property HasDefault property before querying the DefaultValue
property to avoid generating an error.

Default Values Defined as Expressions
Class definitions can define property default values as MATLAB expressions
(see “Expressions in Class Definitions” on page 4-9 for more information).
MATLAB evaluates these expressions the first time the default value is
needed, such as the first time you create an instance of the class.

Querying the meta.property DefaultValue property causes MATLAB
to evaluate a default value expression, if it had not yet been evaluated.
Therefore, querying a property default value can return an error or warning
if errors or warnings occur when MATLAB evaluates the expression. See
“Property With Expression That Errors” on page 14-25 for an example.

Property With No Explicit Default Value
MyClass does not explicitly define a default value for the Foo property:

classdef MyFoo
properties

Foo
end

end

The meta.property instance for property Foo has a value of false for
HasDefault. The class does not explicitly define a default value for Foo.
Therefore, attempting to access the DefaultValue property causes an error:

mc = ?MyFoo;
mp = mc.PropertyList(1);
mp.HasDefault
ans =

14-24

Find Default Values in Property Metadata

0

dv = mp.DefaultValue;
No default value has been defined for property Foo

Abstract Property
MyClass defines the Foo property as Abstract:

classdef MyAbst
properties (Abstract)

Foo
end

end

The meta.property instance for property Foo has a value of false for its
HasDefault property because you cannot define a default value for an
Abstract property. Attempting to access DefaultValue causes an error:

mc = ?MyAbst;
mp = mc.PropertyList(1);
mp.HasDefault
ans =

0

dv = mp.DefaultValue;
Property Foo is abstract and therefore cannot have a default value.

Property With Expression That Errors
MyPropEr defines the Foo property default value as an expression that errors.

classdef MyPropEr
properties

Foo = sin(pie/2);
end

end

14-25

14 Information from Class Metadata

The meta.property instance for property Foo has a value of true for its
HasDefault property because Foo does have a default value determined by
the evaluation of the expression:

sin(pie/2)

However, this expression returns an error (pie is a function that creates a
pie graph, not the value pi).

mc = ?MyPropEr;
mp = mc.PropertyList(1);
mp.HasDefault
ans =

1

dv = mp.DefaultValue;
Error using pie
Not enough input arguments.

Querying the default value causes the evaluation of the expression and
returns the error.

Property With Explicitly Defined Default Value of Empty ([])
MyEmptyProp assigns a default of [] (empty double) to the Foo property:

classdef MyEmptyProp
properties

Foo = [];
end

end

The meta.property instance for property Foo has a value of true for its
HasDefault property. Accessing DefaultValue returns the value []:

mc = ?MyEmptyProp;
mp = mc.PropertyList(1);
mp.HasDefault
ans =

14-26

Find Default Values in Property Metadata

1

dv = mp.DefaultValue;
dv =

[]

14-27

14 Information from Class Metadata

14-28

15

Specializing Object
Behavior

• “Methods That Modify Default Behavior” on page 15-2

• “Redefining Concatenation for Your Class” on page 15-8

• “Object Display” on page 15-9

• “Converting Objects to Another Class” on page 15-11

• “Indexed Reference and Assignment” on page 15-13

• “Implementing Operators for Your Class” on page 15-35

15 Specializing Object Behavior

Methods That Modify Default Behavior

In this section...

“How to Modify Behavior” on page 15-2

“Which Methods Control Which Behaviors” on page 15-2

“Overloading and Overriding Functions and Methods” on page 15-4

“When to Overload MATLAB Functions” on page 15-5

“Caution When Overloading MATLAB Functions” on page 15-6

How to Modify Behavior
There are functions that MATLAB calls implicitly when you perform certain
actions with objects. For example, a statement like [B(1); A(3)] involves
indexed reference and vertical concatenation. These functions enable
user-defined objects to behave like instances of MATLAB built-in classes.

You can change how user-defined objects behave by overloading the function
that controls the particular behavior. To change a behavior, implement the
appropriate method with the same name and signature as the MATLAB
function. If an overloaded method exists, MATLAB calls this method
whenever you perform that action on an object of the class.

Which Methods Control Which Behaviors
The following table lists MATLAB functions and describes the behaviors that
they control. Your class can overload these functions as class methods if you
want to specialize the behaviors described.

Class Method to Implement Description

Concatenating Objects

cat, horzcat, and vertcat Customize behavior when concatenation
objects

See “Subclasses of Built-In Types with
Properties” on page 10-59

Creating Empty Arrays

15-2

Methods That Modify Default Behavior

Class Method to Implement Description

empty Create empty arrays of the specified class.
See “Creating Empty Arrays” on page 8-5

Displaying Objects

disp

display

Called when you enter disp(obj) on the
command line

Called when statements are not
terminated by semicolons. disp is often
used to implement display methods.

See “Object Display” on page 15-9

Converting Objects to Other Classes

converters like double and
char

Convert an object to a MATLAB built-in
class

See “The DocPolynom to Character
Converter” on page 16-8 and “The
DocPolynom to Double Converter” on page
16-7

Indexing Objects

subsref and subsasgn Enables you to create nonstandard
indexed reference and indexed assignment

See “Indexed Reference and Assignment”
on page 15-13

end Supports end syntax in indexing
expressions using an object; e.g.,
A(1:end)

See “Defining end Indexing for an Object”
on page 15-31

numel Determine the number of elements in an
array

See “Interactions with numel and
Overloaded subsref and subsasgn” on
page 15-6

15-3

15 Specializing Object Behavior

Class Method to Implement Description

size Determine the dimensions in an array

subsindex Support using an object in indexing
expressions

See “Using Objects as Indices” on page
15-32

Saving and Loading Objects

loadobj and saveobj Customize behavior when loading and
saving objects

See “Control Save and Load”

See “Implementing Operators for Your Class” on page 15-35 for a list of
functions that implement operators like +, >, ==, and so on.

Overloading and Overriding Functions and Methods
Overloading and overriding are ways to customize the behaviors of existing
functions and methods. Both involve redefining how an existing function or
method works by creating another one that MATLAB calls instead, under
certain conditions. Which approach you use in any situation depends on the
circumstances.

Here is how we use these terms in MATLAB. See “Class Precedence” on page
4-18 for information on how MATLAB determines argument dominance.

Overloading
Overloading means that there is more than one function or method having
the same name within the same scope. MATLAB dispatches to a particular
function or method based on the dominant argument. For example, the
timeseries class overloads the MATLAB plot function. When you call plot
with a timeseries object as an input argument, MATLAB dispatches to the
timeseries class method named plot.

15-4

Methods That Modify Default Behavior

Overriding
Overriding means redefining a method inherited from a superclass. MATLAB
dispatches to the most specific version of the method. That is, if the dominant
argument is an instance of the subclass, then MATLAB calls the subclass
method.

When to Overload MATLAB Functions
You do not need to overload the MATLAB functions if you do not want to
modify the behavior of your class. However, you might need to overload
certain functions when your class defines specialized behaviors that differ
from the default.

Example of Modified Behavior
For example, MATLAB defines indexed reference of an array:

p(3)

as a reference to the third element in the array p.

However, suppose you define a class to represent polynomials and you want
an indexed reference like:

polyobj(3)

to cause an evaluation of the scalar polynomial object with the value of the
independent variable equal to the index value, 3. You overload the subsref
function for the polynomial class to accomplish this.

See “The DocPolynom subsref Method” on page 16-11 for an example.

Select the appropriate function from the preceding table to change the
behavior indicated. For example, MATLAB displays certain information about
objects when you use the disp function or when you enter a statement that
returns an object and is not terminated by a semicolon. Suppose you want
your polynomial class to display the MATLAB expression for the polynomial
represented by the object, instead of the default behavior. The display might
look like this:

>> p

15-5

15 Specializing Object Behavior

p =

x^3 - 2*x - 5

for a polynomial with the coefficients [1 0 2 -5].

You can implement this specialized behavior by overloading the disp and
char methods. See “The DocPolynom disp Method” on page 16-10 for an
example that shows how to implement this change.

Caution When Overloading MATLAB Functions
Many built-in MATLAB functions depend on the behavior of other built-in
functions, like size. Therefore, you must be careful to ensure that what
is returned by an overloaded version of size is a correct and accurate
representation of the size of an object.

You might need to overload numel to restore proper behavior when you have
overloaded size to perform an action that is appropriate for your class design.

Interactions with numel and Overloaded subsref and subsasgn
You must ensure that the value returned by numel is appropriate for your
class design when you overload subsref and subsasgn. subsref uses numel
to compute the number of expected output arguments returned from subsref
(i.e., nargout). Similarly, subsasgn uses numel to compute the expected
number of input arguments to be assigned using subsasgn (i.e., nargin).

The value of nargin for an overloaded subsasgn function is determined by
the value returned by numel plus two (one for the variable to which you are
making an assignment and one for the struct array of subscripts).

If the MATLAB runtime produces errors when calling your class’s overloaded
subsref or subsagnmethods because nargout is wrong for subsref or nargin
is wrong for subsasgn, then you need to overload numel to return a value that
is consistent with your implementation of these indexing functions.

15-6

Methods That Modify Default Behavior

See “Understanding size and numel” on page 10-65 and “Indexed Reference
and Assignment” on page 15-13 for more information on implementing
subsref and subsagn methods.

Ensuring MATLAB Calls Your Overloaded Method
When invoking an overloaded method, be sure that the object passed is the
dominant type in the argument list. To ensure that MATLAB dispatches to
the correct function, use dot notation for method invocation:

obj.methodName(args)

See “Determining Which Method Is Invoked” on page 7-9 for more information.

15-7

15 Specializing Object Behavior

Redefining Concatenation for Your Class

Default Concatenation
You can concatenate objects into arrays. For example, suppose you have three
instances of the class MyClass, obj1, obj2, obj3. You can form various arrays
with these objects using brackets. Horizontal concatenation calls horzcat:

HorArray = [obj1,obj2,obj3];

HorArray is a 1–by–3 array of class MyClass. You can concatenate the objects
along the vertical dimension, which calls vertcat:

VertArray = [obj1;obj2;obj3]

VertArray is a 3–by–1 array of class MyClass. You can use the cat function
to concatenate arrays along different dimensions. For example:

ndArray = cat(3,HorArray,HorArray);

ndArray is a 1–by–3–by–2 array.

You can overload horzcat, vertcat, and cat to produce specialized behaviors
in your class. You must overload both horzcat and vertcat whenever you
want to modify object concatenation because MATLAB uses both functions for
any concatenation operation.

Example of horzcat and vertcat
“Subclasses of Built-In Types with Properties” on page 10-59

15-8

Object Display

Object Display

Default Display
MATLAB calls a method named display whenever an object is referred to in
a statement that is not terminated by a semicolon. For example, the following
statement creates the variable a and calls the MATLAB display method for
class double. This method displays the value of a in the command line.

a = 5
a =

All MATLAB objects use default disp and display functions. You do not
need to overload the defaults, but you can overload in cases where you want
objects to display in different ways.

Note If getting the value of a property returns an error (for example, the
property get method errors), MATLAB ignores this property in the display
and does not return an error.

Define a disp method for your classes if you want MATLAB to display more
useful information on the command line when referring to objects from your
class. In many classes, disp can print the variable name, and then use the
char converter method to print the contents of the variable. You need to
define the char method to convert the object’s data to a character string
because MATLAB displays output as character strings.

You can also use sprintf or other data formatting functions to implement the
disp method for your class.

Examples of disp Methods
For examples of overloaded disp methods, see the following sections:

“Displaying TensileData Objects” on page 2-28

“The DocPolynom disp Method” on page 16-10

15-9

15 Specializing Object Behavior

“The DocAsset Display Method” on page 17-6

“The DocPortfolio disp Method” on page 17-23

Relationship Between disp and display
MATLAB invokes the built-in display function when:

• MATLAB executes a statement that returns a value and is not terminated
with a semicolon.

• Code explicitly invokes the display function.

MATLAB invokes the built-in disp function in the following cases:

• The built-in display function calls disp.

• Code explicitly invokes disp.

Overload disp Or disp and display
The built-in display function prints the name of the variable that is being
displayed, if an assignment is made, or otherwise uses ans as the variable
name. display then calls disp to handle the actual display of the values.

If the variable that is being displayed is an object of a class that overloads
disp, then MATLAB always calls the overloaded method. Overload disp
or disp and display to customize the display of objects. Overloading only
display is not sufficient to properly implement a custom display for your
class.

15-10

Converting Objects to Another Class

Converting Objects to Another Class

Why Implement a Converter
You can convert an object of one class to an object of another class. A
converter method has the same name as the class it converts to, such as char
or double. Think of a converter method as an overloaded constructor method
of another class—it takes an instance of its own class and returns an object of
a different class.

Converters enable you to:

• Use methods defined for another class

• Ensure that expressions involving objects of mixed class types execute
properly

• Control how instances are interpreted in other contexts

For example, suppose you have defined a polynomial class, but you have not
overloaded any of the MATLAB functions that operate on the coefficients
of polynomials, which are doubles. If you create a double method for the
polynomial class, you can use it to call other functions that require inputs of
type double.

Use the double converter method to call other functions:

roots(double(p))

p is a polynomial object, double is a method of the polynomial class, and
roots is a standard MATLAB function whose input arguments are the
coefficients of a polynomial.

Converters and Subscripted Assignment
When you make a subscripted assignment statement such as:

A(1) = myobj;

MATLAB software compares the class of the Right-Hand-Side (RHS) variable
to the class of the Left-Hand-Side (LHS) variable. If the classes are different,
MATLAB attempts to convert the RHS variable to the class of the LHS

15-11

15 Specializing Object Behavior

variable. To do this, MATLAB first searches for a method of the RHS class
that has the same name as the LHS class. Such a method is a converter
method, which is similar to a typecast operation in other languages.

If the RHS class does not define a method to convert from the RHS class to
the LHS class, then MATLAB software calls the LHS class constructor and
passes it to the RHS variable.

For example, suppose you make the following assignments:

A(1) = objA; % Object of class ClassA
A(2) = objB; % Object of class ClassB

MATLAB attempts to call a method of ClassB named ClassA. If no such
converter method exists, MATLAB software calls the ClassA constructor,
passing objB as an argument. If the ClassA constructor cannot accept objB
as an argument, then MATLAB returns an error.

You can create arrays of objects of different classes using cell arrays (see cell
for more information on cell arrays).

Examples of Converter Methods
See the following sections for examples of converter methods:

• “The DocPolynom to Double Converter” on page 16-7

• “The DocPolynom to Character Converter” on page 16-8

• “Subclasses of Built-In Types with Properties” on page 10-59

15-12

Indexed Reference and Assignment

Indexed Reference and Assignment

In this section...

“Overview” on page 15-13

“Default Indexed Reference and Assignment” on page 15-13

“What You Can Modify” on page 15-15

“subsref and subsasgn Within Class Methods — Built-In Called” on page
15-16

“Understanding Indexed Reference” on page 15-18

“Avoid Overriding Access Attributes” on page 15-21

“Understanding Indexed Assignment” on page 15-23

“A Class with Modified Indexing” on page 15-26

“Defining end Indexing for an Object” on page 15-31

“Using Objects as Indices” on page 15-32

Overview
This section describes how indexed reference and assignment work in
MATLAB, and provides information on the behaviors you can modify. There
are also examples of classes that modify the default indexing behavior.

MATLAB provides support for object array indexing by default and many
class designs will require no modification to this behavior. The information in
this section can help you determine if modifying object indexing is useful for
your class design and can show you how to approach those modifications.

Default Indexed Reference and Assignment
MATLAB arrays enable you to reference and assign elements of the array
using a subscripted notation that specifies the indices of specific array
elements. For example, suppose you create two arrays of numbers (using
randi and concatenation).

% Create a 3-by-4 array of integers between 1 and 9
A = randi(9,3,4)

15-13

15 Specializing Object Behavior

A =

4 8 5 7
4 2 6 3
7 5 7 7

% Create a 1-by-3 array of the numbers 3, 6, 9
B = [3 6 9];

You can reference and assign elements of either array using index values
in parentheses:

B(2) = A(3,4);
B
B =

3 7 9

When you execute a statement that involves indexed reference:

C = A(3,4);

MATLAB calls the built-in subsref function to determine how to interpret
the statement. Similarly, if you execute a statement that involves indexed
assignment:

C(4) = 7;

MATLAB calls the built-in subsasgn function to determine how to interpret
the statement.

The MATLAB default subsref and subsasgn functions also work with
user-defined objects. For example, suppose you want to create an array
of objects of the same class:

for k=1:3
objArray(k) = MyClass;

end

Referencing the second element in the object array, objArray, returns the
object constructed when k = 2:

D = objArray(2);

15-14

Indexed Reference and Assignment

class(D)

ans =

MyClass

You also can assign an object to an array of objects of the same class, or an
uninitialized variable (see “Creating Empty Arrays” on page 8-5 for related
information):

newArray(3,4) = D;

Arrays of objects behave much like numeric arrays in MATLAB. You do not
need to implement any special methods to provide this behavior with your
class.

For general information about array indexing, see “Matrix Indexing”.

What You Can Modify
You can modify your class’s default indexed reference and/or assignment
behavior by implementing class methods called subsref and subsasgn. For
syntax description, see their respective reference pages. Keep in mind that
once you add a subsref or subsasgn method to your class, then MATLAB
calls only the class method, not the built-in function. Therefore, you must
implement in your class method all of the indexed reference and assignment
operations that you want your class to support. This includes:

• Dot notation calls to class methods

• Dot notation reference and assignment involving properties

• Any indexing using parentheses '()'

• Any indexing using braces '{}'

While implementing subsref and subsasgn methods gives you complete
control over the interpretation of indexing expressions for objects of your
class, it can be complicated to provide the same behavior that MATLAB
provides by default.

15-15

15 Specializing Object Behavior

When to Modify Indexing Behavior
The default indexing supported by MATLAB for object arrays and dot notation
for access to properties and methods enables user-defined objects to behave
like intrinsic classes, such as double and struct. For example, suppose you
define a class with a property called Data that contains an array of numeric
data. A statement like:

obj.Data(2,3)

returns the value contained in the second row, third column of the array. If
you have an array of objects, you can use an expression like:

objArray(3).Data(4:end)

to return the fourth through last elements in the array contained in the Data
property of the third object in the object array, objArray.

Modify the default indexing behavior when your class design requires
behavior that is different from that provided by MATLAB by default.

subsref and subsasgn Within Class Methods —
Built-In Called
MATLAB does not call class-defined subsref or subsasgn methods for
indexed reference and assignment within the class’s own methods. Within
class methods, MATLAB always calls the built-in subsref and subsasgn
functions regardless of whether the class defines its own methods. This is true
within the class-defined subsref and subsasgn methods as well.

For example, within a class method, this dot reference:

% Calls built-in subsref
obj.Prop

calls the built-in subsref function. To call the class-defined subsref method,
use:

% Calls overloaded subsref
subsref(obj,substruct('.','Prop'))

15-16

Indexed Reference and Assignment

Whenever a class method requires the functionality of the class-defined
subsref or subsasgn method, it must call the overloaded methods with
function calls rather than using the operators, '()', '{}', or '.'.

For example, suppose you define a polynomial class with a subsref method
that causes the polynomial to be evaluated with the value of the independent
variable equal to the subscript. This statement defines the polynomial with
its coefficients:

p = polynom([1 0 -2 -5]);

The MATLAB expression for the resulting polynomial is:

x^3 - 2*x - 5

The following subscripted expression returns the value of the polynomial
at x = 3:

p(3)
ans =

16

Suppose that you want to use this feature in another class method. To do
so, call the subsref function directly. The evalEqual method accepts two
polynom objects and a value at which to evaluate the polynomials:

methods
function ToF = evalEqual(p1,p2,x)

% Create arguments for subsref
subs.type = '()';
subs.subs = {x};
% Need to call subsref explicity
y1 = subsref(p1,subs);
y2 = subsref(p2,subs);
if y1 == y2

ToF = true;
else

ToF = false;
end

end
end

15-17

15 Specializing Object Behavior

This behavior enables you to use standard MATLAB indexing to implement
specialized behaviors. See “A Class with Modified Indexing” on page 15-26 for
examples of how to use both built-in and class-modified indexing.

Understanding Indexed Reference
Object indexed references are in three forms — parentheses, braces, and
name:

A(I)
A{I}
A.name

Each of these statements causes a call by MATLAB to the subsref method of
the class of A, or a call to the built-in subsref function, if the class of A does
not implement a subsref method.

MATLAB passes two arguments to subsref:

B = subsref(A,S)

The first argument is the object being referenced, A. The second argument,
S, is a struct array with two fields:

• S.type is a string containing '()', ’{}', or '.' specifying the indexing
type used.

• S.subs is a cell array or string containing the actual index or name. A
colon used as an index is passed in the cell array as the string ':'. Ranges
specified using a colon (e.g., 2:5) are expanded to 2 3 4 5.

For example, the expression

A(1:4,:)

causes MATLAB to call subsref(A,S), where S is a 1-by-1 structure with

S.type = '()'
S.subs = {1:4,':'} % A 2-element cell array

% containing the numbers 1 2 3 4 and ":"

15-18

Indexed Reference and Assignment

Returning the contents of each cell of S.subs gives the index values for the
first dimension and a string ':' for the second dimension:

S.subs{:}
ans =

1 2 3 4

ans =

:

The default subsref returns all array elements in rows 1 through 4 and all
of the columns in the array.

Similarly, the expression

A{1:4}

uses

S.type ='{}'
S.subs = {1:4} % A cell array

% containing the numbers 1 2 3 4

The default subsref returns the contents of all cell array elements in rows
1 through 4 and all of the columns in the array.

The expression

A.Name

calls subsref(A,S) where

S.type = '.'
S.subs = 'Name' % The string 'Name'

The default subsref returns the contents of the Name field in the struct
array or the value of the property Name if A is an object with the specified
property name.

15-19

15 Specializing Object Behavior

Complex Indexed References
These simple calls are combined for more complicated indexing expressions.
In such cases, length(S) is the number of indexing levels. For example,

A(1,2).PropertyName(1:4)

calls subsref(A,S), where S is a 3-by-1 structure array with the values:

S(1).type = '()' S(2).type = '.' S(3).type = '()'

S(1).subs = {1,2} S(2).subs = 'PropertyName' S(3).subs = {1:4}

Writing subsref
Your class’s subsref method must interpret the indexing expressions passed
in by MATLAB. Any behavior you want your class to support must be
implemented by your subsref. However, your method can call the built-in
subsref to handle indexing types that you do not want to change.

You can use a switch statement to determine the type of indexing used and to
obtain the actual indices. The following three code fragments illustrate how
to interpret the input arguments. In each case, the function must return the
value (B) that is returned by your subsref function.

For a parentheses index:

% Handle A(n)
switch S.type
case '()'

B = A(S.subs{:});
end

For a brace index:

% Handle A{n}
switch S.type
case '{}'
% Determine what this indexing means to your class
% E.g., CellProperty contained a cell array

B = A.CellProperty{S.subs{:}};
end

15-20

Indexed Reference and Assignment

While braces are used for cell arrays in MATLAB, your subsref method is
free to define its own meaning for this syntax.

For a name index, you might access property values. Method calls require a
second level of indexing if there are arguments. The name can be an arbitrary
string for which you take an arbitrary action:

switch S.type
case '.'

switch S.subs
case 'name1'

B = A.name1;
case 'name2'

B = A.name2;
end

end

Examples of subsref
These links show examples of classes that implement subsref methods:

“A Class with Modified Indexing” on page 15-26

“Subclasses of Built-In Types with Properties” on page 10-59

“A Class to Represent Hardware” on page 10-70

“The DocPolynom subsref Method” on page 16-11

See also, “Understanding size and numel” on page 10-65

Avoid Overriding Access Attributes
Because subsref is a class method, it has access to private class members.
Avoid inadvertently giving access to private methods and properties as you
handle various types of reference. Consider this subsref method defined for a
class having private properties, x and y:

classdef MyPlot

15-21

15 Specializing Object Behavior

properties (Access = private)

x

y

end

properties

Maximum

Minimum

Average

end

methods

function obj = MyPlot(x,y)

obj.x = x;

obj.y = y;

obj.Maximum = max(y);

obj.Minimum = min(y);

obj.Average = mean(y);

end

function B = subsref(A,S)

switch S(1).type

case '.'

switch S(1).subs

case 'plot'

% Reference to A.x and A.y call built-in subsref

B = plot(A.x,A.y);

otherwise

% Enable dot notation for all properties and methods

B = A.(S.subs);

end

end

end

end

end

This subsref enables users to use dot notation to perform an action (create a
plot) using the name 'plot'. The statement:

obj = MyPlot(1:10,1:10);
h = obj.plot;

calls the plot function and returns the handle to the graphics object.

15-22

Indexed Reference and Assignment

You do not need to explicitly code each method and property name because
the otherwise code in the inner switch block handles any name reference
that you do not explicitly specify in case statements. However, using this
technique exposes any private and protected class members via dot notation.
For example, you can reference the private property, x, with this statement:

obj.x

ans =

1 2 3 4 5 6 7 8 9 10

The same issue applies to writing a subsasgnmethod that enables assignment
to private or protected properties. Your subsref and subsasgn methods
might need to code each specific property and method name explicitly to avoid
violating the class design.

Understanding Indexed Assignment

Object indexed assignments are in three forms — parentheses, braces, and
name:

A(I) = B
A{I} = B
A.name = B

Each of these statements causes a call by MATLAB to the subsasgn method
of the class of A, or a call to the built-in function, if the class of A does not
implement a subsasgn method.

MATLAB passes three arguments to subsasgn:

A = subsasgn(A,S,B)

The first argument, A, is the object being assigned the value in the third
argument B.

The second argument, S, is a struct array with two fields:

15-23

15 Specializing Object Behavior

• S.type is a string containing '()', '{}', or '.' specifying the indexing
type used.

• S.subs is a cell array or string containing the actual index or name. A
colon used as an index is passed in the cell array as the string ':'. Ranges
specified using a colon (e.g., 2:5) are expanded to 2 3 4 5.

For example, the assignment statement:

A(2,3) = B;

generates a call to subsasgn: A = subsasgn(A,S,B) where S is:

S.type = '()'
S.subs = {2,3}

The default subsasgn:

• Determines the class of A. If B is not the same class a A, then MATLAB tries
to construct an object of the same class as A using B as an input argument
(e.g., by calling a converter method, if one exists). If this attempt fails,
MATLAB returns an error.

• If A and B are, or can be made, into the same class, then MATLAB assigns
the value of B to the array element at row 2, column 3.

• If A does not exist before you execute the assignment statement, then
MATLAB initializes the five array elements that come before A(2,3) with
a default object of the class of A and B. For example, empty elements are
initialized to zero in the case of a numeric array or an empty cell ([]) in
the case of cell arrays. See “Creating Empty Arrays” on page 8-5 for more
information on how MATLAB initializes empty arrays.

Similarly, the expression

A{2,3} = B

uses

S.type ='{}'
S.subs = {2,3} % A 2-element cell array containing the numbers 2 and 3

The default subsasgn:

15-24

Indexed Reference and Assignment

• Assigns B to the cell array element at row 2, column 3.

• If A does not exist before you execute the assignment statement, MATLAB
initializes the five cells that come before A(2,3) with []. The result is a
2–by3 cell array.

The expression

A.Name = B

calls A = subsasgn(A,S,B) where

S.type = '.'
S.subs = 'Name' % The string 'Name'

The default subsasgn:

• Assigns B to the struct field Name.

• If A does not exist before you execute the assignment statement, MATLAB
creates a new struct variable, A with field Name and assigns the value of B
to this field location.

• If struct A exists, but has no field Name, then MATLAB adds the field Name
and assigns the value of B to the new field location.

• If struct A exists and has a Name field, then MATLAB assigns the value
of B to Name.

You can redefine all or some of these assignment behaviors by implementing
a subsasgn method for your class.

Indexed Assignment to Objects
If A is an object, the expression:

A.Name = B

calls A = subsasgn(A,S,B) where

S.type = '.'
S.subs = 'Name' % The string 'Name'

15-25

15 Specializing Object Behavior

The default subsasgn:

• Attempts to assign B to the Name property.

• If the class of A does not have a Name property, MATLAB returns an error.

• If the Name property has restricted access (private or protected),
MATLAB determines if the assignment is allowed based on the context
in which the assignment is made.

• If the class of A defines a set method for property Name, MATLAB calls
the set method.

• MATLAB applies all other property attributes before determining whether
to assigning B to the property Name.

Complex Indexed Assignments
These simple calls are combined for more complicated indexing expressions.
In such cases, length(S) is the number of indexing levels. For example,

A(1,2).PropertyName(1:4) = B

calls subsasgn(A,S,B), where S is a 3-by-1 structure array with the values:

S(1).type = '()' S(2).type = '.' S(3).type = '()'

S(1).subs = {1,2} S(2).subs = 'PropertyName' S(3).subs = {1:4}

For an example of subsasgnmethod, see “Specialized Subscripted Assignment
— subsasgn” on page 15-29.

A Class with Modified Indexing
This example defines a class that modifies the default indexing behavior. It
uses a combination of default indexing and specialized indexing. The example
shows some useful techniques for implement subsref and subsasgn methods,
but does not implement a fully robust class. You cannot, for example,
concatenate objects into an array without adding other methods, such as
horzcat, vertcat, cat, size, and perhaps other methods.

See “Subclasses of Built-In Types with Properties” on page 10-59 for another
example of a class that modifies indexing and concatenation behavior.

15-26

Indexed Reference and Assignment

Class Description
The class has three properties:

• Data — numeric test data

• Description — description of test data

• Date — date test was conducted

Assume you have the following data (randi):

d = randi(9,3,4)
d =

8 9 3 9
9 6 5 2
2 1 9 9

Create an instance of the class:

obj = MyDataClass(d,'Test001');

The constructor arguments pass the values for the Data and Description
properties. The clock function assigns the value to the Date property from
within the constructor. This approach captures the time and date information
when the instance is created.

Here is the basic code listing without the subsref and subsasgn methods.

classdef MyDataClass

properties

Data

Description

end

properties (SetAccess = private)

Date

end

methods

function obj = MyDataClass(data,desc)

if nargin > 0

obj.Data = data;

end

15-27

15 Specializing Object Behavior

if nargin > 1

obj.Description = desc;

end

obj.Date = clock;

end

end

end

Specialized Subscripted Reference — subsref
Use the default indexed reference behavior for scalar objects, and add the
ability to index into the Data property with an expression like:

obj(2,3)

ans =

5

This statement is the equivalent of:

obj.Data(2,3)

which the class also supports.

Redefining '()' indexing as described here means you cannot create arrays
of MyDataClass objects and use '()' indexing to access individual objects.
Create only scalar objects.

To achieve the design goals, the subsref method calls the builtin subsref
for indexing of type '.' and defines its own version of '()' type indexing.

function sref = subsref(obj,s)

% obj(i) is equivalent to obj.Data(i)

switch s(1).type

% Use the built-in subsref for dot notation

case '.'

sref = builtin('subsref',obj,s);

case '()'

if length(s)<2

% Note that obj.Data is passed to subsref

15-28

Indexed Reference and Assignment

sref = builtin('subsref',obj.Data,s);

return

else

sref = builtin('subsref',obj,s);

end

% No support for indexing using '{}'

case '{}'

error('MYDataClass:subsref',...

'Not a supported subscripted reference')

end

end

Specialized Subscripted Assignment — subsasgn
The class supports the equivalent behavior in indexed assignment. You can
assign values to the Data property by referencing only the object.

obj(2,3) = 9;

is equivalent to:

obj.Data(2,3) = 9;

Like the subsref method, the subsasgn method calls the builtin subsasgn
for indexing of type '.' and defines its own version of '()' type indexing.

Another useful approach is the use of the substruct function to redefine the
index type and index subscripts struct that MATLAB passes to subsref
and subsasgn.

function obj = subsasgn(obj,s,val)

if isempty(s) && strcmp(class(val),'MYDataClass')

obj = MyDataClass(val.Data,val.Description);

end

switch s(1).type

% Use the built-in subsasagn for dot notation

case '.'

obj = builtin('subsasgn',obj,s,val);

case '()'

if length(s)<2

15-29

15 Specializing Object Behavior

if strcmp(class(val),'MYDataClass')

error('MYDataClass:subsasgn',...

'Object must be scalar')

elseif strcmp(class(val),'double')

% Redefine the struct s to make the call: obj.Data(i)

snew = substruct('.','Data','()',s(1).subs(:));

obj = subsasgn(obj,snew,val);

end

end

% No support for indexing using '{}'

case '{}'

error('MYDataClass:subsasgn',...

'Not a supported subscripted assignment')

end

end

Implementing Addition for Object Data — plus
Allow direct addition of the Data property data by implementing a plus
method:

function a = double(obj)
a = obj.Data;

end

function c = plus(obj,b)
c = double(obj) + double(b);

end

For example, add a scalar to the object Data array:

% List Current value of Data
obj(:,:)

ans =

8 9 3 9
9 6 5 2
2 1 9 9

% Add 7 to the array

15-30

Indexed Reference and Assignment

obj + 7

ans =

15 16 10 16
16 13 12 9
9 8 16 16

The MyDataClass double method provides a way to convert an object to an
array of doubles. It is possible to add a MyDataClass object to another class
of object, providing the other class implements a double method that also
returns an array of doubles. MATLAB applies the rules of addition and
returns errors for dimension mismatch, and so on.

Defining end Indexing for an Object
When you use end in an object indexing expression, such as A(4:end), the
end function returns the index value corresponding to the last element in
that dimension.

Classes can overload the end function as a class method to implement
specialized behavior. If your class defines an end method, MATLAB calls that
method to determine how to interpret the expression.

The end has the calling syntax:

ind = end(A,k,n)

where

• A is the object

• k is the index in the expression using the end syntax

• n is the total number of indices in the expression

• ind is the index value to use in the expression

For example, consider the expression

A(end-1,:)

15-31

15 Specializing Object Behavior

MATLAB calls the end method defined for the object A using the arguments

ind = end(A,1,2)

These arguments mean the end statement occurs in the first index element
and there are two index elements. The end class method returns the index
value for the last element of the first dimension (from which 1 is subtracted in
this case). If your class implements an end method, ensure that it returns a
value appropriate for the class.

The end Method for the MyDataClass Example

The end method for the MyDataClass example (see “A Class with Modified
Indexing” on page 15-26) operates on the contents of the Data property. The
objective of this method is to return a value that can replace end in any
indexing expression, such as:

obj(4:end)
obj.Data(2,3:end)

and so on.

The following end function determines a positive integer value for end and
returns it so that MATLAB can plug it into the indexing expression.

function ind = end(obj,k,n)
szd = size(obj.Data);
if k < n

ind = szd(k);
else

ind = prod(szd(k:end));
end

end

Using Objects as Indices
MATLAB can use objects as indices in indexed expressions. The rules of array
indexing apply — indices must be positive integers. Therefore, MATLAB
must be able to derive a value from the object that is a positive integer, which
it uses in the indexed expression.

15-32

Indexed Reference and Assignment

Indexing expressions like X(A), where A is an object, cause MATLAB to call
the default subsindex function, unless such an expression results in a call
to an overloaded subsref or subsasgn method defined by the class of X. See
“Scenarios for Implementing Objects as Indices” on page 15-33.

subsindex must return the value of the object as a zero-based integer index
values in the range 0 to prod(size(X))-1).

Scenarios for Implementing Objects as Indices
If you want to enable indexing of one object by another object, such as X(A),
you can implement this behavior in various ways:

• Define a subsindex method in the class of A, which converts A to an
integer. MATLAB calls A’s subsindex method to perform default indexing
operations (when the class of X does not overload the default subsref or
subsasgn method).

• If the class of X overloads subsref or subsasgn, these methods can explicitly
call the subsindex method of A. In this case, ensure that A implements a
subsindex method with appropriate error checking in your program.

• If the class of X overloads subsref or subsasgn, these methods can contain
code that determines an integer index value without relying on the class of
A to implement a subsindex method.

Implementing subsindex
MATLAB calls the subsindex method defined for the object used as the index.
For example, suppose you want to use object A to index into object B. B can be
a single object or an array, depending on your objectives.

C = B(A);

A subsindex method implemented by class A might do something as simple
as convert the object to double format to be used as an index, as shown in
this sample code.

function ind = subsindex(obj)
% Convert the object a to double format to be used
% as an index in an indexing expression

ind = double(obj);

15-33

15 Specializing Object Behavior

end

Or, your class might implement a special converter method that returns a
numeric value representing an object based on particular values of object
properties.

function ind = subsindex(obj)
% Return the value of an object property

ind = obj.ElementPosition;
end

subsindex values are 0-based, not 1-based.

15-34

Implementing Operators for Your Class

Implementing Operators for Your Class

In this section...

“Overloading Operators” on page 15-35

“MATLAB Operators and Associated Functions” on page 15-36

Overloading Operators
You can implement MATLAB operators (+, *, >, etc.) to work with objects of
your class. Do this by defining the relevant functions as class methods.

Each built-in MATLAB operator has an associated function (e.g., the +
operator has an associated plus.m function). You can overload any operator
by creating a class method with the appropriate name.

Overloading enables operators to handle different types and numbers of input
arguments and perform whatever operation is appropriate for the highest
precedence object.

Object Precedence
User-defined classes have a higher precedence than built-in classes. For
example, if q is an object of class double and p is a user-defined class,
MyClass, both of these expressions:

q + p
p + q

generate a call to the plus method in the MyClass, if it exists. Whether this
method can add objects of class double and class MyClass depends on how
you implement it.

When p and q are objects of different classes, MATLAB applies the rules of
precedence to determine which method to use.

“Object Precedence in Expressions Using Operators” on page 7-30 provides
information on how MATLAB determines which overloaded method to call.

15-35

15 Specializing Object Behavior

Examples of Overloaded Operators
“Defining Arithmetic Operators for DocPolynom” on page 16-14 provides
examples of overloaded operators.

MATLAB Operators and Associated Functions
The following table lists the function names for common MATLAB operators.

Operation Method to Define Description

a + b plus(a,b) Binary addition

a - b minus(a,b) Binary subtraction

-a uminus(a) Unary minus

+a uplus(a) Unary plus

a.*b times(a,b) Element-wise
multiplication

a*b mtimes(a,b) Matrix multiplication

a./b rdivide(a,b) Right element-wise
division

a.\b ldivide(a,b) Left element-wise
division

a/b mrdivide(a,b) Matrix right division

a\b mldivide(a,b) Matrix left division

a.^b power(a,b) Element-wise power

a^b mpower(a,b) Matrix power

a < b lt(a,b) Less than

a > b gt(a,b) Greater than

a <= b le(a,b) Less than or equal to

a >= b ge(a,b) Greater than or equal
to

a ~= b ne(a,b) Not equal to

a == b eq(a,b) Equality

15-36

Implementing Operators for Your Class

Operation Method to Define Description

a & b and(a,b) Logical AND

a | b or(a,b) Logical OR

~a not(a) Logical NOT

a:d:b

a:b

colon(a,d,b)

colon(a,b)

Colon operator

a' ctranspose(a) Complex conjugate
transpose

a.' transpose(a) Matrix transpose

command window
output

display(a) Display method

[a b] horzcat(a,b,...) Horizontal
concatenation

[a; b] vertcat(a,b,...) Vertical concatenation

a(s1,s2,...sn) subsref(a,s) Subscripted reference

a(s1,...,sn) = b subsasgn(a,s,b) Subscripted
assignment

b(a) subsindex(a) Subscript index

15-37

../ref/disp.html

15 Specializing Object Behavior

15-38

16

Implementing a Class for
Polynomials

16 Implementing a Class for Polynomials

A Polynomial Class

In this section...

“Adding a Polynomial Object to the MATLAB Language” on page 16-2

“Displaying the Class Files” on page 16-2

“Summary of the DocPolynom Class” on page 16-3

“The DocPolynom Constructor Method” on page 16-5

“Removing Irrelevant Coefficients” on page 16-6

“Converting DocPolynom Objects to Other Types” on page 16-7

“The DocPolynom disp Method” on page 16-10

“The DocPolynom subsref Method” on page 16-11

“Defining Arithmetic Operators for DocPolynom” on page 16-14

“Overloading MATLAB Functions for the DocPolynom Class” on page 16-16

Adding a Polynomial Object to the MATLAB Language
This example implements a class to represent polynomials in the MATLAB
language. A value class is used because the behavior of a polynomial object
within the MATLAB environment should follow the copy semantics of other
MATLAB variables. This example also implements for this class, methods
to provide enhanced display and indexing, as well as arithmetic operations
and graphing.

See “Comparing Handle and Value Classes” on page 5-2 for more information
on value classes.

This class overloads a number of MATLAB functions, such as roots, polyval,
diff, and plot so that these function can be used with the new polynomial
object.

Displaying the Class Files
Open the DocPolynom class definition file in the MATLAB editor.

16-2

A Polynomial Class

To use the class, create a folder named @DocPolynom and save DocPolynom.m
to this folder. The parent folder of @DocPolynom must be on the MATLAB
path.

Summary of the DocPolynom Class
The class definition specifies a property for data storage and defines a folder
(@DocPolynom) that contains the class definition.

The following table summarizes the properties defined for the DocPolynom
class.

DocPolynom Class Properties

Name Class Default Description

coef double [] Vector of polynomial coefficients
[highest order ... lowest order]

The following table summarizes the methods for the DocPolynom class.

DocPolynom Class Methods

Name Description

DocPolynom Class constructor

double Converts a DocPolynom object to a double (i.e., returns
its coefficients in a vector)

char Creates a formatted display of the DocPolynom object as
powers of x and is used by the disp method

disp Determines how MATLAB displays a DocPolynom
objects on the command line

subsref Enables you to specify a value for the independent
variable as a subscript, access the coef property with
dot notation, and call methods with dot notation.

plus Implements addition of DocPolynom objects

16-3

16 Implementing a Class for Polynomials

DocPolynom Class Methods (Continued)

Name Description

minus Implements subtraction of DocPolynom objects

mtimes Implements multiplication of DocPolynom objects

roots Overloads the roots function to work with DocPolynom
objects

polyval Overloads the polyval function to work with
DocPolynom objects

diff Overloads the diff function to work with DocPolynom
objects

plot Overloads the plot function to work with DocPolynom
objects

Using the DocPolynom Class
The following examples illustrate basic use of the DocPolynom class.

Create DocPolynom objects to represent the following polynomials. Note that
the argument to the constructor function contains the polynomial coefficients

and .

p1 = DocPolynom([1 0 -2 -5])
p1 =

x^3 - 2*x - 5
p2 = DocPolynom([2 0 3 2 -7])
p2 =

2*x^4 + 3*x^2 + 2*x - 7

The DocPolynom disp method displays the polynomial in MATLAB syntax.

Find the roots of the polynomial using the overloaded root method.

>> roots(p1)

ans =

16-4

A Polynomial Class

2.0946
-1.0473 + 1.1359i
-1.0473 - 1.1359i

Add the two polynomials p1 and p2.

The MATLAB runtime calls the plus method defined for the DocPolynom
class when you add two DocPolynom objects.

p1 + p2
ans =

2*x^4 + x^3 + 3*x^2 - 12

The sections that follow describe the implementation of the methods
illustrated here, as well as other methods and implementation details.

The DocPolynom Constructor Method
The following function is the DocPolynom class constructor, which is in the file
@DocPolynom/DocPolynom.m:

function obj = DocPolynom(c)
% Construct a DocPolynom object using the coefficients supplied
if isa(c,'DocPolynom')

obj.coef = c.coef;
else

obj.coef = c(:).';
end

end

Constructor Calling Syntax
You can call the DocPolynom constructor method with two different
arguments:

• Input argument is a DocPolynom object — If you call the constructor
function with an input argument that is already a DocPolynom object, the
constructor returns a new DocPolynom object with the same coefficients as
the input argument. The isa function checks for this situation.

16-5

16 Implementing a Class for Polynomials

• Input argument is a coefficient vector — If the input argument is not a
DocPolynom object, the constructor attempts to reshape the values into a
vector and assign them to the coef property.

The coef property set method restricts property values to doubles. See
“Removing Irrelevant Coefficients” on page 16-6 for a description of the
property set method.

An example use of the DocPolynom constructor is the statement:

p = DocPolynom([1 0 -2 -5])
p =

x^3 - 2*x -5

This statement creates an instance of the DocPolynom class with the specified
coefficients. Note how class methods display the equivalent polynomial using
MATLAB language syntax. The DocPolynom class implements this display
using the disp and char class methods.

Removing Irrelevant Coefficients
MATLAB software represents polynomials as row vectors containing
coefficients ordered by descending powers. Zeros in the coefficient vector
represent terms that drop out of the polynomial. Leading zeros, therefore, can
be ignored when forming the polynomial.

Some DocPolynom class methods use the length of the coefficient vector to
determine the degree of the polynomial. It is useful, therefore, to remove
leading zeros from the coefficient vector so that its length represents the
true value.

The DocPolynom class stores the coefficient vector in a property that uses
a set method to remove leading zeros from the specified coefficients before
setting the property value.

function obj = set.coef(obj,val)
% coef set method
if ~isa(val,'double')

error('Coefficients must be of class double')
end
ind = find(val(:).'~=0);

16-6

A Polynomial Class

if ~isempty(ind);
obj.coef = val(ind(1):end);

else
obj.coef = val;

end
end

See “Property Set Methods” on page 6-16 for more information on controlling
property values.

Converting DocPolynom Objects to Other Types
The DocPolynom class defines two methods to convert DocPolynom objects
to other classes:

• double— Converts to standard MATLAB numeric type so you can perform
mathematical operations on the coefficients.

• char — Converts to string; used to format output for display in the
command window

The DocPolynom to Double Converter
The double converter method for the DocPolynom class simply returns the
coefficient vector, which is a double by definition:

function c = double(obj)
% DocPolynom/Double Converter
c = obj.coef;

end

For the DocPolynom object p:

p = DocPolynom([1 0 -2 -5])

the statement:

c = double(p)

returns:

c=

16-7

16 Implementing a Class for Polynomials

1 0 -2 -5

which is of class double:

class(c)
ans =

double

The DocPolynom to Character Converter
The char method produces a character string that represents the polynomial
displayed as powers of an independent variable, x. Therefore, after you have
specified a value for x, the string returned is a syntactically correct MATLAB
expression, which you can evaluate.

The char method uses a cell array to collect the string components that make
up the displayed polynomial.

The disp method uses char to format the DocPolynom object for display.
Class users are not likely to call the char or disp methods directly, but
these methods enable the DocPolynom class to behave like other data classes
in MATLAB.

Here is the char method.

function str = char(obj)

% Created a formated display of the polynom

% as powers of x

if all(obj.coef == 0)

s = '0';

else

d = length(obj.coef)-1;

s = cell(1,d);

ind = 1;

for a = obj.coef;

if a ~= 0;

if ind ~= 1

if a > 0

s(ind) = {' + '};

ind = ind + 1;

16-8

A Polynomial Class

else

s(ind) = {' - '};

a = -a;

ind = ind + 1;

end

end

if a ~= 1 || d == 0

if a == -1

s(ind) = {'-'};

ind = ind + 1;

else

s(ind) = {num2str(a)};

ind = ind + 1;

if d > 0

s(ind) = {'*'};

ind = ind + 1;

end

end

end

if d >= 2

s(ind) = {['x^' int2str(d)]};

ind = ind + 1;

elseif d == 1

s(ind) = {'x'};

ind = ind + 1;

end

end

d = d - 1;

end

end

str = [s{:}];

end

Evaluating the Output
If you create the DocPolynom object p:

p = DocPolynom([1 0 -2 -5]);

and then call the char method on p:

16-9

16 Implementing a Class for Polynomials

char(p)

the result is:

ans =
x^3 - 2*x - 5

The value returned by char is a string that you can pass to eval after you
have defined a scalar value for x. For example:

x = 3;

eval(char(p))
ans =

16

“The DocPolynom subsref Method” on page 16-11 describes a better way to
evaluate the polynomial.

The DocPolynom disp Method
To provide a more useful display of DocPolynom objects, this class overloads
disp in the class definition.

This dispmethod relies on the charmethod to produce a string representation
of the polynomial, which it then displays on the screen.

function disp(obj)
% DISP Display object in MATLAB syntax
c = char(obj); % char returns a cell array
if iscell(c)

disp([' ' c{:}])
else

disp(c) % all coefficients are zero
end

end

When MATLAB Calls the disp Method
The statement:

16-10

A Polynomial Class

p = DocPolynom([1 0 -2 -5])

creates a DocPolynom object. Since the statement is not terminated with a
semicolon, the resulting output is displayed on the command line:

p =
x^3 - 2*x - 5

See “Object Display” on page 15-9 for information about defining the display
of objects.

The DocPolynom subsref Method
Normally, subscripted assignment is automatically defined by MATLAB.
However, in this particular case, the design of the DocPolynom class specifies
that a subscripted reference to a DocPolynom object causes an evaluation of the
polynomial with the value of the independent variable equal to the subscript.

For example, given the following polynomial:

a subscripted reference evaluates f(x), where x is the value of the subscript.

Creating a DocPolynom object p:

p = DocPolynom([1 0 -2 -5])
p =

x^3 - 2*x - 5

the following subscripted expression evaluates the value of the polynomial at
x = 3 and x = 4 and returns a vector of resulting values:

p([3 4])
ans =

16 51

16-11

16 Implementing a Class for Polynomials

Special Behavior Requires Specializing subsref
The DocPolynom class redefines the default subscripted reference behavior
by implementing a subsref method. Once you define a subsref method,
MATLAB software calls this method for objects of this class whenever a
subscripted reference occurs. You must, therefore, define all the behaviors
you want your class to exhibit in the local method.

The DocPolynom subsref method implements the following behaviors:

• The ability to pass a value for the independent variable as a subscripted
reference (i.e., p(3) evaluates the polynomial at x = 3)

• Dot notation for accessing the coef property

• Dot notation for access to all class methods, which accept and return
differing numbers of input and output arguments

subsref Implementation Details
See subsref for general information on implementing this method.

When you need to implement a subsref method to support calling methods
with arguments using dot notation, both the type and subs structure fields
contain multiple elements.

For example, consider a call to the class polyval method:

>> p = DocPolynom([1 0 -2 -5])
p =

x^3 - 2*x - 5
>> p.polyval([3 5 7])
ans =

16 110 324

This method requires an input argument of values at which to evaluate the
polynomial and returns the value of f(x) at these values. subsref performs
the method call through the statements:

if length(s)>1

b = a.(s(1).subs)(s(2).subs{:}); % method with arguments

else

b = a.(s.subs); % method without input arguments

16-12

A Polynomial Class

end

Where the contents of the structure s, which is passed to subsref contains:

s(1).type is '.'

s(2).type is '()'

s(1).subs is 'polyval'

s(2).subs is [3 5 7]

When you implement a subsref method for a class, you must implement all
subscripted reference explicitly, as show in the following code listing.

function b = subsref(a,s)
% Implement a special subscripted assignment
switch s(1).type
case '()'

ind = s.subs{:};
b = a.polyval(ind);

case '.'
switch s(1).subs
case 'coef'

b = a.coef;
case 'plot'

a.plot;
otherwise

if length(s)>1
b = a.(s(1).subs)(s(2).subs{:});

else
b = a.(s.subs);

end
end

otherwise
error('Specify value for x as obj(x)')

end
end

16-13

16 Implementing a Class for Polynomials

Defining Arithmetic Operators for DocPolynom
Several arithmetic operations are meaningful on polynomials and should be
implemented for the DocPolynom class. See “Implementing Operators for Your
Class” on page 15-35 for information on overloading other operations that
could be useful with this class, such as division, horizontal concatenation, etc.

This section shows how to implement the following methods:

Method and Syntax Operator Implemented

plus(a,b) Binary addition

minus(a,b) Binary subtraction

mtimes(a,b) Matrix multiplication

When overloading arithmetic operators, keep in mind what data types you
want to operate on. In this section, the plus, minus, and mtimes methods
are defined for the DocPolynom class to handle addition, subtraction,
and multiplication on DocPolynom/DocPolynom and DocPolynom/double
combinations of operands.

Defining the + Operator
If either p or q is a DocPolynom object, the expression

p + q

generates a call to a function @DocPolynom/plus, unless the other object is
of a class of higher precedence. “Object Precedence in Expressions Using
Operators” on page 7-30 provides more information.

The following function redefines the plus (+) operator for the DocPolynom
class:

function r = plus(obj1,obj2)

% Plus Implement obj1 + obj2 for DocPolynom

obj1 = DocPolynom(obj1);

obj2 = DocPolynom(obj2);

k = length(obj2.coef) - length(obj1.coef);

r = DocPolynom([zeros(1,k) obj1.coef]+[zeros(1,-k) obj2.coef]);

16-14

A Polynomial Class

end

Here is how the function works:

• Ensure that both input arguments are DocPolynom objects so that
expressions such as

p + 1

that involve both a DocPolynom and a double, work correctly.

• Access the two coefficient vectors and, if necessary, pad one of them with
zeros to make both the same length. The actual addition is simply the
vector sum of the two coefficient vectors.

• Call the DocPolynom constructor to create a properly typed result.

Defining the - Operator
You can implement the minus operator (-) using the same approach as the
plus (+) operator.

The MATLAB runtime calls the DocPolynom minus method to compute p - q,
where p, q, or both are DocPolynom objects:

function r = minus(obj1,obj2)

% MINUS Implement obj1 - obj2 for DocPolynom

obj1 = DocPolynom(obj1);

obj2 = DocPolynom(obj2);

k = length(obj2.coef) - length(obj1.coef);

r = DocPolynom([zeros(1,k) obj1.coef]-[zeros(1,-k) obj2.coef]);

end

Defining the * Operator
The MATLAB runtime calls the DocPolynom mtimes method to compute the
product p*q. The mtimes method is used to overload matrix multiplication
since the multiplication of two polynomials is simply the convolution (conv)
of their coefficient vectors:

function r = mtimes(obj1,obj2)

16-15

16 Implementing a Class for Polynomials

% MTIMES Implement obj1 * obj2 for DocPolynoms
obj1 = DocPolynom(obj1);
obj2 = DocPolynom(obj2);
r = DocPolynom(conv(obj1.coef,obj2.coef));

end

Using the Arithmetic Operators
Given the DocPolynom object:

p = DocPolynom([1 0 -2 -5])

The following two arithmetic operations call the DocPolynom plus and mtimes
methods:

q = p+1
r = p*q

to produce

q =
x^3 - 2*x - 4

r =
x^6 - 4*x^4 - 9*x^3 + 4*x^2 + 18*x + 20

Overloading MATLAB Functions for the DocPolynom
Class
The MATLAB language already has several functions for working with
polynomials that are represented by coefficient vectors. You can overload
these functions to work with the new DocPolynom class.

In the case of DocPolynom objects, the overloaded methods can simply apply
the original MATLAB function to the coefficients (i.e., the values returned
by the coef property).

This section shows how to implement the following MATLAB functions.

16-16

A Polynomial Class

MATLAB Function Purpose

root(obj) Calculates polynomial roots

polyval(obj,x) Evaluates polynomial at specified points

diff(obj) Finds difference and approximate
derivative

plot(obj) Creates a plot of the polynomial function

Defining the roots Function for the DocPolynom Class
The DocPolynom roots method finds the roots of DocPolynom objects by
passing the coefficients to the overloaded roots function:

function r = roots(obj)
% roots(obj) returns a vector containing the roots of obj
r = roots(obj.coef);

end

If p is the following DocPolynom object:

p = DocPolynom([1 0 -2 -5]);

then the statement:

roots(p)

gives the following answer:

ans =
2.0946
-1.0473 + 1.1359i
-1.0473 - 1.1359i

Defining the polyval Function for the DocPolynom Class
The MATLAB polyval function evaluates a polynomial at a given set of
points. The DocPolynom polyval method simply extracts the coefficients
from the coef property and then calls the MATLAB version to compute the
various powers of x:

16-17

16 Implementing a Class for Polynomials

function y = polyval(obj,x)
% polyval(obj,x) evaluates obj at the points x
y = polyval(obj.coef,x);

end

Defining the diff Function for the DocPolynom Class
The MATLAB diff function finds the derivative of the polynomial. The
DocPolynom diff method differentiates a polynomial by reducing the degree
by 1 and multiplying each coefficient by its original degree:

function q = diff(obj)
% diff(obj) is the derivative of the DocPolynom obj
c = obj.coef;
d = length(c) - 1; % degree
q = DocPolynom(obj.coef(1:d).*(d:-1:1));

end

Defining the plot Function for the DocPolynom Class
The MATLAB plot function creates line graphs. The overloaded plot
function selects the domain of the independent variable to be slightly larger
than an interval containing all real roots. Then the polyval method is used
to evaluate the polynomial at a few hundred points in the domain:

function plot(obj)
% plot(obj) plots the DocPolynom obj
r = max(abs(roots(obj)));
x = (-1.1:0.01:1.1)*r;
y = polyval(obj,x);
plot(x,y);
title(['y = ' char(obj)])
xlabel('X')
ylabel('Y','Rotation',0)
grid on

end

Plotting the two DocPolynom objects x and p calls most of these methods:

x = DocPolynom([1 0]);

16-18

A Polynomial Class

p = DocPolynom([1 0 -2 -5]);
plot(diff(p*p + 10*p + 20*x) - 20)

16-19

16 Implementing a Class for Polynomials

16-20

17

Designing Related Classes

• “A Simple Class Hierarchy” on page 17-2

• “Containing Assets in a Portfolio” on page 17-19

17 Designing Related Classes

A Simple Class Hierarchy

In this section...

“Shared and Specialized Properties” on page 17-2

“Designing a Class for Financial Assets” on page 17-3

“Displaying the Class Files” on page 17-4

“Summary of the DocAsset Class” on page 17-4

“The DocAsset Constructor Method” on page 17-5

“The DocAsset Display Method” on page 17-6

“Designing a Class for Stock Assets” on page 17-7

“Displaying the Class Files” on page 17-7

“Summary of the DocStock Class” on page 17-7

“Designing a Class for Bond Assets” on page 17-10

“Displaying the Class Files” on page 17-10

“Summary of the DocBond Class” on page 17-11

“Designing a Class for Savings Assets” on page 17-15

“Displaying the Class Files” on page 17-15

“Summary of the DocSavings Class” on page 17-15

Shared and Specialized Properties
As an example of how subclasses are specializations of more general classes,
consider an asset class that can be used to represent any item that has
monetary value. Some examples of assets are stocks, bonds, and savings
accounts. This example implements four classes — DocAsset, and the
subclasses DocStock, DocBond, DocSavings.

The DocAsset class holds the data that is common to all of the specialized
asset subclasses in class properties. The subclasses inherit the super class
properties in addition to defining their own properties. The subclasses are all
kinds of assets.

17-2

A Simple Class Hierarchy

The following diagram shows the properties defined for the classes of assets.

DocAsset

Properties
Description
Date
Type
CurrentValue

DocStocks
(is a DocAsset)

Inherited Props
Description
Date
Type
CurrentValue

DocStocks Props
NumShares
SharePrice

DocBonds
(is a DocAsset)

Inherited Props
Description
Date
Type
CurrentValue

DocBonds Props
FaceValue
Yield
CurrentBondYield

DocSavings
(is a DocAsset)

Inherited Props
Description
Date
Type
CurrentValue

DocSavings Props
InterestRate

The DocStock, DocBond, and DocSavings classes inherit properties from the
DocAsset class. In this example, the DocAsset class provides storage for data
common to all subclasses and shares methods with these subclasses.

Designing a Class for Financial Assets
This class provides storage and access for information common to all asset
children. It is not intended to be instantiated directly, so it does not require
an extensive set of methods. The class contains the following methods:

• Constructor

17-3

17 Designing Related Classes

• A local setter function for one property

Displaying the Class Files
Open the DocAsset class definition file in the MATLAB Editor.

To use the class, create a folder named @DocAsset and save DocAsset.m to
this folder. The parent folder of @DocAsset must be on the MATLAB path.

Summary of the DocAsset Class
The class is defined in one file, DocAsset.m, which you must place in an @
folder of the same name. The parent folder of the @DocAsset folder must be
on the MATLAB path. See the addpath function for more information.

The following table summarizes the properties defined for the DocAsset class.

DocAsset Class Properties

Name Class Default Description

Description char '' Description of asset

CurrentValue double 0 Current value of asset

Date char date Date when record is created
(set by date function)

Type char 'savings' Type of asset (stock, bond,
savings)

The following table summarizes the methods for the DocAsset class.

DocAsset Class Methods

Name Description

DocAsset Class constructor

disp Displays information about this object

set.Type Set function for Type. Property tests for correct
value when property is set.

17-4

A Simple Class Hierarchy

The DocAsset Constructor Method
This class has four properties that store data common to all of the asset
subclasses. All except Date are passed to the constructor by a subclass
constructor. Date is a private property and is set by a call to the date function.

• Description— A character string that describes the particular asset (e.g.,
stock name, savings bank name, bond issuer, and so on).

• Date — The date the object was created. This property’s set access is
private so that only the constructor assigns the value using the date
command when creating the object.

• Type — The type of asset (e.g., savings, bond, stock). A local set function
provides error checking whenever an object is created.

• CurrentValue — The current value of the asset.

Property Definition Block
The following code block shows how the properties are defined. Note the set
function defined for the Type property. It restricts the property’s values to one
of three strings: bond, stock, or savings.

properties
Description = '';
CurrentValue = 0;

end
properties(SetAccess = private)

Date % Set value in constructor
Type = 'savings'; % Provide a default value

end

Constructor Method Code
The DocAsset class is not derived from another class, so you do not need to
call a superclass constructor. MATLAB constructs an object when you assign
values to the specified output argument (a in the following code):

function a = DocAsset(description,type,current_value)
% DocAsset constructor

if nargin > 0

17-5

17 Designing Related Classes

a.Description = description;
a.Date = date;
a.Type = type;
a.CurrentValue = current_value;

end
end % DocAsset

Set Function for Type Property
In this class design, there are only three types of assets—bonds, stocks, and
savings. Therefore, the possible values for the Type property are restricted to
one of three possible stings by defining a set function as follows:

function obj = set.Type(obj,type)

if ~(strcmpi(type,'bond') || strcmpi(type,'stock') || strcmpi(type,'savings'))

error('Type must be either bond, stock, or savings')

end

obj.Type = type;

end %Type set function

The MATLAB runtime calls this function whenever an attempt is made to
set the Type property, even from within the class constructor function or by
assigning an initial value. Therefore, the following statement in the class
definition would produce an error:

properties
Type = 'cash';

end

The only exception is the set.Type function itself, where the statement:

obj.Type = type;

does not result in a recursive call to set.Type.

The DocAsset Display Method
The asset disp method is designed to be called from child-class disp methods.
Its purpose is to display the data it stores for the child object. The method

17-6

A Simple Class Hierarchy

simply formats the data for display in a way that is consistent with the
formatting of the child’s disp method:

function disp(a)

% Display a DocAsset object

fprintf('Description: %s\nDate: %s\nType: %s\nCurrentValue:%9.2f\n',...

a.Description,a.Date,a.Type,a.CurrentValue);

end % disp

The DocAsset subclass display methods can now call this method to display
the data stored in the parent class. This approach isolates the subclass disp
methods from changes to the DocAsset class.

Designing a Class for Stock Assets
Stocks are one type of asset. A class designed to store and manipulate
information about stock holdings needs to contain the following information
about the stock:

• The number of shares

• The price per share

In addition, the base class (DocAsset) maintains general information
including a description of the particular asset, the date the record was
created, the type of asset, and its current value.

Displaying the Class Files
Open the DocStock class definition file in the MATLAB Editor.

To use the class, create a folder named @DocStock and save DocStock.m to
this folder. The parent folder of @DocStock must be on the MATLAB path.

Summary of the DocStock Class
This class is defined in one file, DocStock.m, which you must place in an @
folder of the same name. The parent folder of the @DocStock folder must be
on the MATLAB path. See the addpath function for more information.

DocStock is a subclass of the DocAsset class.

17-7

17 Designing Related Classes

The following table summarizes the properties defined for the DocStock class.

DocStock Class Properties

Name Class Default Description

NumShares double 0 Number of shares of a
particular stock

SharePrice double 0 Current value of asset

Properties Inherited from the DocAsset Class

Description char '' Description of asset

CurrentValue double 0 Current value of asset

Date char date Date when record is created
(set by date function)

Type char '' Type of asset (stock, bond,
savings)

The following table summarizes the methods for the DocStock class.

DocStock Class Methods

Name Description

DocStock Class constructor

disp Displays information about the object

Specifying the Base Class
The < symbol specifies the DocAsset class as the base class for the DocStock
class in the classdef line:

classdef DocStock < DocAsset

17-8

A Simple Class Hierarchy

Property Definition Block
The following code shows how the properties are defined:

properties
NumShares = 0;
SharePrice = 0;

end

Using the DocStock Class
Suppose you want to create a record of a stock asset for 200 shares of a
company called Xdotcom with a share price of $23.47.

Call the DocStock constructor function with the following arguments:

• Stock name or description

• Number of shares

• Share price

For example, the following statement:

XdotcomStock = DocStock('Xdotcom',200,23.47);

creates a DocStock object, XdotcomStock, that contains information about
a stock asset in Xdotcom Corp. The asset consists of 200 shares that have
a per share value of $23.47.

The DocStock Constructor Method
The constructor first creates an instance of a DocAsset object since the
DocStock class is derived from the DocAsset class (see “The DocAsset
Constructor Method” on page 17-5). The constructor returns the DocStock
object after setting value for its two properties:

function s = DocStock(description,num_shares,share_price)
if nargin ~= 3 % Support no argument constructor syntax

description = '';
num_shares = 0;
share_price = 0;

end

17-9

17 Designing Related Classes

s = s@DocAsset(description,'stock',share_price*num_shares);
s.NumShares = num_shares;
s.SharePrice = share_price;

end % DocStock

The DocStock disp Method
When you issue the statement (without terminating with a semicolon):

XdotcomStock = DocStock('Xdotcom',100,25)

the MATLAB runtime looks for a method in the @DocStock folder called disp.
The disp method for the DocStock class produces this output:

Description: Xdotcom
Date: 17-Nov-1998
Type: stock
Current Value: $2500.00
Number of shares: 100
Share price: $25.00

The following function is the DocStock disp method. When this function
returns from the call to the DocAsset disp method, it uses fprintf to display
the Numshares and SharePrice property values on the screen:

function disp(s)
disp@DocAsset(s)
fprintf('Number of shares: %g\nShare price: %3.2f\n',...
s.NumShares,s.SharePrice);

end % disp

Designing a Class for Bond Assets
The DocBond class is similar to the DocStock class in that it is derived from
the DocAsset class to represent a specific type of asset.

Displaying the Class Files
Open the DocBond class definition file in the MATLAB Editor.

17-10

A Simple Class Hierarchy

To use the class, create a folder named @DocBond and save DocBond.m to this
folder . The parent folder of @DocBond must be on the MATLAB path. See the
addpath function for more information.

Summary of the DocBond Class
This class is defined in one file, DocBond.m, which you must place in an @
folder of the same name. The parent folder of the @DocBond folder must on the
MATLAB path.

DocStock is a subclass of the DocAsset class.

The following table summarize the properties defined for the DocBond class

DocBond Class Properties

Name Class Default Description

FaceValue double 0 Face value of the bond

SharePrice double 0 Current value of asset

Properties Inherited from the DocAsset Class

Description char '' Description of asset

CurrentValue double 0 Current value of asset

Date char date Date when record is created
(set by date function)

Type char '' Type of asset (stock, bond,
savings)

The following table summarizes the methods for the DocStock class.

17-11

17 Designing Related Classes

DocBond Class Methods

Name Description

DocBond Class constructor

disp Displays information about this object and calls the
DocAsset disp method

calc_value Utility function to calculate the bond’s current
value

Specifying the Base Class
The < symbol specifies the DocAsset class as the base class for the DocBond
class in the classdef line:

classdef DocBond < DocAsset

Property Definition Block
The following code block shows how the properties are defined:

properties
FaceValue = 0;
Yield = 0;
CurrentBondYield = 0;

end

Using the DocBond Class
Suppose you want to create a record of an asset that consists of an xyzbond
with a face value of $100 and a current yield of 4.3%. The current yield for the
equivalent bonds today is 6.2%, which means that the market value of this
particular bond is less than its face value.

Call the DocBond constructor function with the following arguments:

• Bond name or description

• Bond’s face value

17-12

A Simple Class Hierarchy

• Bond’s interest rate or yield

• Current interest rate being paid by equivalent bonds (used to calculate the
current value of the asset)

For example, this statement:

b = DocBond('xyzbond',100,4.3,6.2);

creates a DocBond object, b, that contains information about a bond asset
xyzbond with a face value of $100, a yield of 4.3%, and also contains
information about the current yield of such bonds (6.2% in this case) that is
used to calculate the current value.

Note The calculations performed in this example are intended only to
illustrate the use of MATLAB classes and do not represent a way to determine
the actual value of any monetary investment.

The DocBond Constructor Method
The DocBond constructor method requires four arguments. It also supports
the no argument syntax by defining default values for the missing input
arguments:

function b = DocBond(description,face_value,yield,current_yield)
if nargin ~= 4

description = '';
face_value = 0;
yield = 0;
current_yield = 0;

end
market_value = DocBond.calc_value(face_value,yield,current_yield);
b = b@DocAsset(description,'bond',market_value);
b.FaceValue = face_value;
b.Yield = yield;
b.CurrentBondYield = current_yield;

end % DocBond

17-13

17 Designing Related Classes

The calc_value Method
The DocBond class determines the market value of bond assets using a simple
formula that scales the face value by the ratio of the bond’s interest yield to
the current yield for equivalent bonds.

Calculation of the asset’s market value requires that the yields be nonzero,
and should be positive just to make sense. While the calc_value method
issues no errors for bad yield values, it does ensure bad values are not used
in the calculation of market value.

The asset’s market value is passed to the DocAsset base-class constructor
when it is called within the DocBond constructor. calc_value has its Static
attribute set to true because it does not accept a DocBond object as an input
argument. The output of calc_value is used by the base-class (DocAsset)
constructor:

methods (Static)
function market_value = calc_value(face_value,yield,current_yield)

if current_yield <= 0 || yield <= 0
market_value = face_value;

else
market_value = face_value*yield/current_yield;

end
end % calc_value

end % methods

The DocBond disp Method
When you issue this statement (without terminating it with a semicolon):

b = DocBond('xyzbond',100,4.3,6.2)

the MATLAB runtime looks for a method in the @DocBond folder called disp.
The disp method for the DocBond class produces this output:

Description: xyzbond
Date: 17-Nov-1998
Type: bond
Current Value: $69.35
Face value of bonds: $100
Yield: 4.30%

17-14

A Simple Class Hierarchy

The following function is the DocBond disp method. When this function
returns from the call to the DocAsset disp method, it uses fprintf to display
the FaceValue, Yield, and CurrentValue property values on the screen:

function disp(b)
disp@DocAsset(b) % Call DocAsset disp method
fprintf('Face value of bonds: $%g\nYield: %3.2f%%\n',...

b.FaceValue,b.Yield);
end % disp

Designing a Class for Savings Assets
The DocSavings class is similar to the DocStock and DocBond class in that it
is derived from the DocAsset class to represent a specific type of asset.

Displaying the Class Files
Open the DocSavings class definition file in the MATLAB Editor.

To use the class, create a folder named @DocSavings and save DocSavings.m
to this folder . The parent folder of @DocSavings must be on the MATLAB
path.

Summary of the DocSavings Class
This class is defined in one file, DocSavings.m, which you must place in an @
folder of the same name. The parent folder of the @DocSavings folder must on
the MATLAB path. See the addpath function for more information.

The following table summarizes the properties defined for the DocSavings
class.

DocSavings Class Properties

Name Class Default Description

InterestRate double '' Current interest
rate paid on the
savings account

Properties Inherited from the DocAsset Class

17-15

17 Designing Related Classes

DocSavings Class Properties (Continued)

Name Class Default Description

Description char '' Description of
asset

CurrentValue double 0 Current value of
asset

Date char date Datewhen record
is created (set by
date function)

Type char '' The type of asset
(stock, bond,
savings)

The following table summarizes the methods for the DocSavings class.

DocSavings Class Methods

Name Description

DocSavings Class constructor

disp Displays information about this object and calls
the DocAsset disp method

Specifying the Base Class
The < symbol specifies the DocAsset class as the base class for the DocBond
class in the classdef line:

classdef DocSavings < DocAsset

Property Definition Block
The following code shows how the property is defined:

properties

17-16

A Simple Class Hierarchy

InterestRate = 0;
end

Using the DocSavings Class
Suppose you want to create a record of an asset that consists of a savings
account with a current balance of $1000 and an interest rate of 2.9%.

Call the DocSavings constructor function with the following arguments:

• Bank account description

• Account balance

• Interest rate paid on savings account

For example, this statement:

sv = DocSavings('MyBank',1000,2.9);

creates a DocSavings object, sv, that contains information about an account
in MyBank with a balance of $1000 and an interest rate of 2.9%.

The DocSavings Constructor Method
The savings account interest rate is saved in the DocSavings class
InterestRate property. The asset description and the current value (account
balance) are saved in the inherited DocAsset object properties.

The constructor calls the base class constructor (DocAsset.m) to create an
instance of the object. It then assigns a value to the InterestRate property.
The constructor supports the no argument syntax by providing default values
for the missing arguments.

function s = DocSavings(description,balance,interest_rate)
if nargin ~= 3

description = '';
balance = 0;
interest_rate = 0;

end
s = s@DocAsset(description,'savings',balance);
s.InterestRate = interest_rate;

17-17

17 Designing Related Classes

end % DocSavings

The DocSavings disp Method
When you issue this statement (without terminating it with a semicolon):

sv = DocSavings('MyBank',1000,2.9)

the MATLAB runtime looks for a method in the @DocSavings folder called
disp. The disp method for the DocSavings class produces this output:

Description: MyBank
Date: 17-Nov-1998
Type: savings
Current Value: $1000.00
Interest Rate: 2.90%

The following function is the DocSaving disp method. When this function
returns from the call to the DocAsset disp method, it uses fprintf to display
the Numshares and SharePrice property values on the screen:

function disp(b)
disp@DocAsset(b) % Call DocAsset disp method
fprintf('%s%3.2f%%\n','Interest Rate: ',s.InterestRate);

end % disp

17-18

Containing Assets in a Portfolio

Containing Assets in a Portfolio

Kinds of Containment
Aggregation is the containment of objects by other objects. The basic
relationship is that each contained object "is a part of" the container object.
Composition is a more strict form of aggregation in which the contained
objects are parts of the containing object and are not associated with any
other objects. Portfolio objects form a composition with asset objects because
the asset objects are value classes, which are copied when the constructor
method creates the DocPortfolio object.

For example, consider a financial portfolio class as a container for a set of
assets (stocks, bonds, savings, and so on). It can group, analyze, and return
useful information about the individual assets. The contained objects are not
accessible directly, but only via the portfolio class methods.

“A Simple Class Hierarchy” on page 17-2 provides information about the
assets collected by this portfolio class.

Designing the DocPortfolio Class
The DocPortfolio class is designed to contain the various assets owned by
an individual client and to provide information about the status of his or her
investment portfolio. This example implements a somewhat over-simplified
portfolio class that:

• Contains an individual’s assets

• Displays information about the portfolio contents

• Displays a 3-D pie chart showing the relative mix of asset types in the
portfolio

Displaying the Class Files
Open the DocPortfolio class definition file in the MATLAB Editor.

To use the class, create a folder named @DocPortfolio and save
DocPortfolio.m to this folder . The parent folder of @DocPortfolio must be
on the MATLAB path.

17-19

17 Designing Related Classes

Summary of the DocPortfolio Class
This class is defined in one file, DocPortfolio.m, which you must place in
an @ folder of the same name. The parent folder of the @DocPortfolio folder
must on the MATLAB path. See the addpath function for more information.

The following table summarizes the properties defined for the DocPortfolio
class.

DocPortfolio Class Properties

Name Class Default Description

Name char '' Name of client owning the
portfolio

IndAssets cell {} A cell array containing
individual asset objects

TotalValue double 0 Value of all assets (calculated
in the constructor method)

The following table summarizes the methods for the DocPortfolio class.

DocBond Class Methods

Name Description

DocPortfolio Class constructor

disp Displays information about this object and calls
the DocAsset disp method

pie3 Overloaded version of pie3 function designed to
take a single portfolio object as an argument

Property Definition Block
The following code block shows how the properties are defined:

properties
Name = '';

end

17-20

Containing Assets in a Portfolio

properties (SetAccess = private)
IndAssets = {};
TotalValue = 0;

end

How Class Properties Are Used

• Name — Stores the name of the client as a character string. The client’s
name is passed to the constructor as an input argument.

• IndAsset — A cell array that stores asset objects (i.e., DocStock,
DocBond, and DocSavings objects). These asset objects are passed to the
DocPortfolio constructor as input arguments and assigned to the property
from within the constructor function.

• IndAsset— The structure of this property is known only to DocPortfolio
class member functions so the property’s SetAccess attribute is set to
private.

• TotalValue — Stores the total value of the client’s assets. The class
constructor determines the value of each asset by querying the asset’s
CurrentValue property and summing the result. Access to the TotalValue
property is restricted to DocPortfolio class member functions by setting
the property’s SetAccess attribute to private.

Using the DocPortfolio Class
The DocPortfolio class is designed to provide information about the financial
assets owned by a client. There are three possible types of assets that a client
can own: stocks, bonds, and savings accounts.

The first step is to create an asset object to represent each type of asset
owned by the client:

XYZStock = DocStock('XYZ Stocks',200,12.34);
USTBonds = DocBond('U.S. Treasury Bonds',1600,3.2,2.8);
SaveAccount = DocSavings('MyBank Acc # 123',2000,6);
VictoriaSelna = DocPortfolio('Victoria Selna',...

XYZStock,...
SaveAccount,...
USTBonds)

17-21

17 Designing Related Classes

The DocPortfolio object displays the following information:

VictoriaSelna =

Assets for Client: Victoria Selna
Description: XYZ Stocks
Date: 11-Mar-2008
Type: stock
Current Value: $2468.00
Number of shares: 200
Share price: $12.34
Description: MyBank Acc # 123
Date: 11-Mar-2008
Type: savings
Current Value: $2000.00
Interest Rate: 6.00%
Description: U.S. Treasury Bonds
Date: 11-Mar-2008
Type: bond
Current Value: $1828.57
Face value of bonds: $1600
Yield: 3.20%

Total Value: $6296.57

“The DocPortfolio pie3 Method” on page 17-23 provides a graphical display
of the portfolio.

The DocPortfolio Constructor Method
The DocPortfolio constructor method takes as input arguments a client’s
name and a variable length list of asset objects (DocStock, DocBond, and
DocSavings objects in this example).

The IndAssets property is a cell array used to store all asset objects. From
these objects, the constructor determines the total value of the client’s assets.
This value is stored in the TotalValue property:

function p = DocPortfolio(name,varargin)

17-22

Containing Assets in a Portfolio

if nargin > 0
p.Name = name;
for k = 1:length(varargin)

p.IndAssets{k} = varargin(k);
asset_value = p.IndAssets{k}{1}.CurrentValue;
p.TotalValue = p.TotalValue + asset_value;

end
end

end % DocPortfolio

The DocPortfolio disp Method
The portfolio dispmethod lists the contents of each contained object by calling
the object’s disp method. It then lists the client name and total asset value:

function disp(p)
fprintf('\nAssets for Client: %s\n',p.Name);
for k = 1:length(p.IndAssets)

disp(p.IndAssets{k}{1}) % Dispatch to corresponding disp
end
fprintf('\nTotal Value: $%0.2f\n',p.TotalValue);

end % disp

The DocPortfolio pie3 Method
The DocPortfolio class overloads the MATLAB pie3 function to accept a
portfolio object and display a 3-D pie chart illustrating the relative asset mix
of the client’s portfolio. MATLAB calls the @DocPortfolio/pie3.m version of
pie3 whenever the input argument is a single portfolio object:

function pie3(p)

% Step 1: Get the current value of each asset

stock_amt = 0; bond_amt = 0; savings_amt = 0;

for k = 1:length(p.IndAssets)

if isa(p.IndAssets{k},'DocStock')

stock_amt = stock_amt + p.IndAssets{k}.CurrentValue;

elseif isa(p.IndAssets{k},'DocBond')

bond_amt = bond_amt + p.IndAssets{k}.CurrentValue;

elseif isa(p.IndAssets{k},'DocSavings')

savings_amt = savings_amt + p.IndAssets{k}.CurrentValue;

end % if

17-23

17 Designing Related Classes

end % for

% Step 2: Create labels and data for the pie graph

k = 1;

if stock_amt ~= 0

label(k) = {'Stocks'};

pie_vector(k) = stock_amt;

k = k + 1;

end % if

if bond_amt ~= 0

label(k) = {'Bonds'};

pie_vector(k) = bond_amt;

k = k + 1;

end % if

if savings_amt ~= 0

label(k) = {'Savings'};

pie_vector(k) = savings_amt;

end % if

% Step 3: Call pie3, adjust fonts and colors

pie3(pie_vector,label);set(gcf,'Renderer','zbuffer')

set(findobj(gca,'Type','Text'),...

'FontSize',14,'FontWeight','bold')

colormap prism

stg(1) = {['Portfolio Composition for ',p.Name]};

stg(2) = {['Total Value of Assets: $',num2str(p.TotalValue,'%0.2f')]};

title(stg,'FontSize',10)

end % pie3

There are three parts in the overloaded pie3 method.

• Step 1 — Get the CurrentValue property of each contained asset object
and determine the total value in each category.

• Step 2 — Create the pie chart labels and build a vector of graph data,
depending on which objects are present in the portfolio.

• Step 3 — Call the MATLAB pie3 function, make some font and colormap
adjustments, and add a title.

17-24

Containing Assets in a Portfolio

Visualizing a Portfolio
You can use a DocPortfolio object to present an individual’s financial
portfolio. For example, given the following assets:

XYZStock = DocStock('XYZ Stocks',200,12.34);
USTBonds = DocBond('U.S. Treasury Bonds',1600,3.2,2.8);
SaveAccount = DocSavings('MyBank Acc # 123',2000,6);
VictoriaSelna = DocPortfolio('Victoria Selna',...

XYZStock,...
SaveAccount,...
USTBonds);

you can use the class’s pie3 method to display the relative mix of assets as
a pie chart.

pie3(VictoriaSelna)

17-25

17 Designing Related Classes

17-26

Index

IndexA
arithmetic operators

overloading 16-14

C
classes

defining 3-5
value classes 5-4

E
end method 15-31
examples

container class 17-19
polynomial class 16-2

F
functions

overloading 16-16

M
methods

end 15-31

O
object-oriented programming

overloading
subscripting 15-18

objects
as indices into objects 15-32

overloaded function 7-27
overloading 15-18

arithmetic operators 16-14
functions 16-16
pie3 17-23

P
pie3 function overloaded 17-23
polynomials

example class 16-2

R
reference, subscripted 15-18

S
subscripted assignment 15-23
subscripting

overloading 15-18
subsref 15-18

V
value classes 5-4

Index-1

	toc
	Using Object-Oriented Design in MATLAB
	Begin Using Object-Oriented Programming
	Video Demo of MATLAB Classes
	MATLAB Programmer Without Object-Oriented Programming Experience
	MATLAB Programmer with Object-Oriented Programming Experience

	Why Use Object-Oriented Design
	Approaches to Writing MATLAB Programs
	Procedural Program Design
	Object-Oriented Program Design
	Classes and Objects
	Using Objects in MATLAB Programs
	Objects Organize Data
	Objects Manage Their Own Data

	When Should You Start Creating Object-Oriented Programs
	Understanding a Problem in Terms of Its Objects
	Objects Manage Internal State
	Reducing Redundancy
	Defining Consistent Interfaces
	Reducing Complexity
	Fostering Modularity
	Overloaded Functions and Operators
	Reduce Code Redundancy
	Learning More

	Class Diagram Notation

	MATLAB Classes Overview
	Classes in the MATLAB Language
	Classes
	User-Defined Classes
	MATLAB Classes — Key Terms

	Some Basic Relationships
	Classes
	Class Hierarchies
	Reusing Solutions
	Objects
	Encapsulating Information

	Introductory Examples
	Learning Object-Oriented Programming

	Detailed Information and Examples
	Rapid Access to Information

	Developing Classes — Typical Workflow
	Formulating a Class
	Class Data
	Class Operations
	Class Events

	Implementing the BankAccount Class
	Commented Example Code
	Class Definition

	Implementing the AccountManager Class
	Class Definition

	Using the BankAccount Class

	Working with Objects in Functions
	Flexible Workflow
	Performing a Task with an Object
	The Filewriter Class
	Using a Filewriter Object

	Using Object Functionality
	More Information on These Techniques

	Class to Represent Structured Data
	Commented Example Code
	Objects As Data Structures
	Concepts on Which This Example Is Based.

	Structure of the Data
	The TensileData Class
	Creating an Instance and Assigning Data
	Advantages of a Class vs. a Structure Array

	Restricting Properties to Specific Values
	Defining the Material Property Set Function

	Simplifying the Interface with a Constructor
	Calculating Modulus

	Using a Dependent Property
	Modulus Property Get Method
	Modulus Property Set Method

	Displaying TensileData Objects
	Method to Plot Stress vs. Strain

	Class to Implement Linked Lists
	Commented Example Code
	Important Concepts Demonstrated
	Encapsulation
	Handle Class Behavior

	dlnode Class Design
	Class Properties
	Class Methods

	Creating Doubly Linked Lists
	Why a Handle Class for Linked Lists?
	Defining the dlnode Class
	Class Properties
	Creating a Node Object
	Disconnecting Nodes
	Inserting Nodes
	Displaying a Node on the Command Line
	Deleting a Node Object

	Specializing the dlnode Class
	NamedNode Class Definition
	Using NamedNode to Create a Doubly Linked List

	Class for Graphing Functions
	Commented Example Code
	Class Definition Block
	Using the topo Class
	Behavior of the Handle Class
	How a Value Class Differs

	Class Definition—Syntax Reference
	Class Files
	Options for Class Folders
	Creating a Single, Self-Contained Class Definition File
	Distributing the Class Definition to Mulitple Files

	Grouping Classes with Package Folders
	More Information on Class Folders

	Class Components
	Class Building Blocks – Defining Class Members
	More In Depth Information

	Classdef Block
	Specifying Attributes and Superclasses
	Assigning Class Attributes
	Specifying Superclasses

	Properties
	What You Can Define
	Initializing Property Values
	Defining Default Values
	Assigning Property Values from the Constructor
	Initializing Properties to Unique Values
	Property Attributes
	Property Access Methods
	Referencing Object Properties Using Variables

	Methods and Functions
	The Methods Block
	Method Calling Syntax
	Methods In Separate Files
	Define the Method Like Any Function
	Methods That Must Be In the classdef File
	Specifying Method Attributes in classdef File
	Defining Static Methods in Separate Files
	Using Separate Files for Methods

	Private Methods
	More Detailed Information On Methods
	Class-Related Functions
	Overloading Functions and Operators

	Events and Listeners
	Specifying Events
	Listening for Events

	Specifying Attributes
	Attribute Syntax
	Attribute Descriptions
	Attribute Values
	Simpler Syntax for true/false Attributes

	Calling Superclass Methods on Subclass Objects
	Calling a Superclass Constructor
	Calling Superclass Methods

	Representative Class Code
	Example of Class Definition Syntax

	MATLAB Code Analyzer Warnings
	Syntax Warnings and Property Names
	Warnings Caused by Variable/Property Name Conflicts
	Exception to Variable/Property Name Rule

	Objects In Switch Statements
	Evaluating the Switch Statement
	Handle Objects in Switch Statements
	Object Must Be Scalar

	Defining the eq Method
	Behave Like a Built-in Type
	Design of eq
	Implementation of eq

	Enumerations in Switch Statements
	Enumerations Derived from Built-In Types

	Functions to Test Objects
	Functions to Query Class Members

	Using the Editor and Debugger with Classes
	Referring to Class Files
	Debugging Class Files

	Modifying and Reloading Classes
	Ensuring MATLAB Uses Your Changes
	Clear Class Instances
	Clear Classes
	Places That Can Hold Instances

	Compatibility with Previous Versions
	New Class-Definition Syntax Introduced with MATLAB Software Vers
	Cannot Mix Class Hierarchy
	Only One @-Folder per Class
	Private Methods

	Changes to Class Constructors
	Example of Old and New Syntax

	New Features Introduced with Version 7.6
	Examples of Old and New
	Obsolete Documentation

	Comparing MATLAB with Other OO Languages
	Some Differences from C++ and Sun Java Code
	Public Properties
	No Implicit Parameters
	Dispatching
	Calling Superclass Method
	Other Differences

	Modifying Objects
	Passing Objects to Functions

	Common Object-Oriented Techniques

	Defining and Organizing Classes
	User-Defined Classes
	What is a Class Definition
	Attributes for Class Members
	Kinds of Classes
	Constructing Objects
	Class Hierarchies

	Class Definition
	classdef Syntax
	Examples of Class Definitions

	Class Attributes
	Table of Class Attributes
	Specifying Attributes
	Superclass Attributes Are Not Inherited
	Attribute Syntax

	Expressions in Class Definitions
	Basic Knowledge
	Where to Use Expressions in Class Definitions
	Expressions in Attribute Specifications
	Expressions in Default Property Specifications
	Expressions in Class Methods

	How MATLAB Evaluates Expressions
	When Does MATLAB Evaluate These Expressions

	Organizing Classes in Folders
	Options for Class Folders
	@-Folders
	Path Folders
	Access to Functions Defined in Private Folders
	No Class Definitions in Private Folders

	Class Precedence and MATLAB Path
	Previous Behavior of Classes Defined in @-Folders

	Class Precedence
	InferiorClasses Attribute
	Dominant Class
	More Information
	No Attribute Inheritance

	Packages Create Namespaces
	Internal Packages
	Package Folders
	Listing the Contents of a Package

	Referencing Package Members Within Packages
	Referencing Package Members from Outside the Package
	Accessing Class Members — Various Scenarios

	Packages and the MATLAB Path
	Resolving Redundant Names
	Package Functions vs. Static Methods

	Importing Classes
	Related Information
	Syntax for Importing Classes
	Importing Package Functions
	Package Function and Class Method Name Conflict
	Clearing Import List

	Value or Handle Class — Which to Use
	Comparing Handle and Value Classes
	Basic Difference
	Why Select Handle or Value
	Behavior of MATLAB Built-In Classes
	Behavior of User-Defined Classes
	Value Classes
	Value Class Behavior
	Creating a Value Class
	Handle Classes
	Creating a Handle Class
	Subclasses of Handle Classes
	Handle Class Behavior
	Initializing Properties to Handle Objects
	employee as a Value Class
	Deleting Handles

	Which Kind of Class to Use
	Examples of Value and Handle Classes
	When to Use Handle Classes
	When to Use Value Classes

	The Handle Superclass
	Building on the Handle Class
	Handle Subclasses

	Handle Class Methods
	Relational Methods
	Testing Handle Validity
	Handle Class or Graphics Object Handle

	When MATLAB Destroys Objects

	Handle Class Destructor
	Basic Knowledge
	Terms and Concepts
	Syntax of Class Destructor Method
	Calling Delete on an Array

	When to Define a Destructor Method
	Destructors in Class Hierarchies
	Inheriting a Sealed Delete Method
	Destructors in Heterogeneous Hierarchies

	Object Lifecycle
	Inside a Function
	Sequence During Handle Object Destruction
	Destruction of Objects with Cyclic References

	Restrict Explicit Object Deletion
	Inherited Private Delete Methods

	Nondestructor Delete Methods

	Finding Handle Objects and Properties
	Finding Handle Objects
	Finding Handle Object Properties

	Implementing a Set/Get Interface for Properties
	The Standard Set/Get Interface
	Subclass hgsetget
	Get Method Syntax
	Set Method Syntax
	Class Derived from hgsetget
	Property Access Methods Are Called
	Listing All Properties
	Using Handle Arrays with Get
	Handle, Property Name, and Property Value Arrays
	Customizing the Property List

	Controlling the Number of Instances
	Limiting Instances
	Implementing a Singleton Class

	Properties — Storing Class Data
	How to Use Properties
	What Are Properties
	Flexibility of Object Properties

	Types of Properties
	Features of Stored Properties
	When to Use Stored Properties
	Features of Dependent Properties
	When to Use Dependent Properties

	Defining Properties
	Property Definition Block
	Assigning a Default Value

	Accessing Property Values
	Inheritance of Properties
	Specifying Property Attributes

	Property Attributes
	Table of Property Attributes

	Mutable and Immutable Properties
	Setting Property Values

	Property Access Methods
	Property Access Methods
	Restrictions on Access Methods
	Access Methods Cannot Call Other Functions to Access Property Va
	Defining Access Methods

	Property Set Methods
	Set Method Behavior

	Property Get Methods
	Set and Get Methods for Dependent Properties
	Get Method for Dependent Property
	When to Use Set Methods with Dependent Properties
	When to Use Private Set Access with Dependent Properties

	Set and Get Method Execution and Property Events
	Access Methods and Subscripted Reference and Assignment
	Performing Additional Steps with Property Access Methods

	Properties Containing Objects
	Assigning to Read-Only Properties Containing Objects

	Dynamic Properties — Adding Properties to an Instance
	What Are Dynamic Properties
	Characteristics of Dynamic Properties

	Defining Dynamic Properties
	Naming Dynamic Properties
	Setting Dynamic Property Attributes
	Assigning Data to the Dynamic Property

	Responding to Dynamic-Property Events
	Triggering the PropertyAdded Event
	Dynamic Properties and Ordinary Property Events

	Defining Property Access Methods for Dynamic Properties
	Dynamic Properties and ConstructOnLoad

	Methods — Defining Class Operations
	How to Use Methods
	Class Methods
	Kinds of Methods

	Method Naming

	Method Attributes
	Table of Method Attributes

	Ordinary Methods
	Defining Methods
	Methods Inside classdef Block
	Methods in Separate Files

	Determining Which Method Is Invoked
	Dominant Argument
	Dot Notation vs. Function Notation
	Referencing Names with Expressions—Dynamic Reference

	Specifying Precedence
	Controlling Access to Methods
	Invoking Superclass Methods in Subclass Methods
	Limitations of Use

	Invoking Built-In Functions

	Class Constructor Methods
	Rules for Constructors
	Related Information
	Examples of Class Constructors
	Initializing the Object Within a Constructor
	Referencing the Object in a Constructor
	Supporting the No Input Argument Case

	Constructing Subclasses
	Reference Only Specified Superclasses
	Make No Conditional Calls to Superclass Constructors
	Zero or More Superclass Arguments
	More on Subclasses

	Errors During Class Construction
	Basic Structure of Constructor Methods

	Static Methods
	Why Define Static Methods
	Defining a Static Method

	Calling Static Methods
	Inheriting Static Methods

	Overloading Functions for Your Class
	Overloading MATLAB Functions
	Using MATLAB Functions in Conversion Methods
	Implementing MATLAB Operators

	Rules for Naming to Avoid Conflicts

	Object Precedence in Expressions Using Operators
	Specifying Precedence of User-Defined Classes
	Location in the Hierarchy

	Class Methods for Graphics Callbacks
	Callback Arguments
	Background Information

	General Syntax for Callbacks
	Object Scope and Anonymous Functions
	Using Value Classes
	Using Handle Classes

	Example — Class Method as a Slider Callback
	Displaying the Class Files
	Class Properties
	Class Constructor
	Using the SeaLevelAdjuster Class

	Object Arrays
	Creating Object Arrays
	Basic Knowledge
	Class Definitions
	Working with Arrays
	Building Arrays in the Constructor
	Initializing Arrays of Value Objects
	Initial Value of Object Properties
	Creating Empty Arrays
	Assigning Values to an Empty Array

	Initializing Arrays of Handle Objects
	Initializing a Handle Object Array

	Referencing Property Values in Object Arrays
	Object Arrays with Dynamic Properties

	Concatenating Objects of Different Classes
	Basic Knowledge
	MATLAB Concatenation Rules
	Concatenating Objects
	Modifying Default Concatenation

	Converting to the Dominant Class
	Calling the Dominant-Class Constructor

	Implementing Converter Methods

	Events — Sending and Responding to Messages
	Learning to Use Events and Listeners
	Why Use Events and Listeners
	What You Need to Know
	Events and Listeners Basics

	Customizing Event Data
	Defining and Triggering an Event
	Defining the Event Data
	Creating a Listener for the Overflow Event

	Observe Property Changes

	Create a Property Set Listener
	The PushButton Class Design
	Events and Listeners — Concepts
	The Event Model
	Default Event Data
	Customizing Event Data

	Events Only in Handle Classes
	Property-Set and Query Events
	Listeners

	Event Attributes
	Table of Event Attributes

	Events and Listeners — Syntax and Techniques
	Naming Events
	Triggering Events
	Listening to Events
	Removing Listeners

	Defining Event-Specific Data
	Ways to Create Listeners
	Attach Listener to Event Source — Using addlistener
	Limiting Listener Scope — Constructing event.listener Objects Di
	Temporarily Deactivating Listeners
	Permanently Deleting Listeners

	Defining Listener Callback Functions
	Callback Syntax
	Adding Arguments to a Callback Function

	Callback Execution
	Listener Order of Execution
	Managing Callback Errors

	Listen for Changes to Property Values
	Creating Property Listeners
	Set Property Attributes to Enable Property Events
	Define a Callback Function for the Property Event
	Add a Listener to the Property

	Property Event and Listener Classes
	Class Generating the Event
	Class Defining the Listeners

	Aborting Set When Value Does Not Change
	How AbortSet Works

	Update Graphs Using Events and Listeners
	Example Overview
	Access Fully Commented Example Code
	Techniques Demonstrated in This Example
	Summary of fcneval Class
	Summary of fcnview Class
	Methods Inherited from Handle Class
	Using the fcneval and fcnview Classes
	Implementing the UpdateGraph Event and Listener
	Defining and Firing the UpdateGraph Event
	Determining When to Trigger the Event
	Determining Suitability of the Expression
	Other Approaches
	Defining the Listener and Callback for the UpdateGraph Event

	The PostSet Event Listener
	Sequence During the Lm Property Assignment
	Enabling the PostSet Property Event
	Defining the Listener and Callback for the PostSet Event

	Enabling and Disabling the Listeners
	Context Menu Callback

	Building on Other Classes
	Hierarchies of Classes — Concepts
	Classification
	Developing the Abstraction
	Designing Class Hierarchies
	Super and Subclass Behavior
	A Subclass Object “Is A” Superclass Object
	Treat Subclass Objects Like Superclass Objects
	Limitations to Object Substitution

	Implementation and Interface Inheritance

	Creating Subclasses — Syntax and Techniques
	Defining a Subclass
	Class Attributes

	Initializing Superclasses from Subclasses
	Referencing Superclasses Contained in Packages
	Initializing Objects When Using Multiple Superclasses

	Constructor Arguments and Object Initialization
	Call Only Direct Superclass from Constructor
	Sequence of Constructor Calls in a Class Hierarchy
	Using a Subclass to Create an Alias for an Existing Class
	Old Class Constructor Requires Arguments

	Modifying Superclass Methods and Properties
	Modifying Superclass Methods
	Extending Superclass Methods
	Completing Superclass Methods
	Redefining Superclass Methods

	Modifying Superclass Properties
	Private Local Property Takes Precedence in Method

	Subclassing Multiple Classes
	Class Member Compatibility
	Property Conflicts
	Method Conflicts
	Event Conflicts

	Using Multiple Inheritance

	Controlling Allowed Subclasses
	Basic Knowledge
	Why Control Allowed Subclasses
	Specify Allowed Subclasses
	Effect of Defining a Class as an Allowed Subclass

	Define a Sealed Hierarchy of Classes

	Controlling Access to Class Members
	Basic Knowledge
	Related Topics
	Terminology and Concepts
	Possible Values for Access to Class Members
	Applications for Access Control Lists
	Specify Access to Class Members
	Property Access
	Method Access
	Event Access
	How MATLAB Interprets Attribute Values
	Specifying Metaclass Objects

	Properties with Access Lists
	Methods with Access Lists
	Subclasses Without Access

	Abstract Methods with Access Lists

	Supporting Both Handle and Value Subclasses
	Basic Knowledge
	Key Concepts

	Handle Compatibility Rules
	Defining Handle-Compatible Classes
	A Handle Compatible Class
	Return Modified Objects

	Subclassing Handle-Compatible Classes
	Combine Nonhandle Utility Class with Handle Classes
	Nonhandle Subclasses of a Handle-Compatible Class

	Methods for Handle Compatible Classes
	Identifying Handle Objects
	Modifying Value Objects in Methods

	Handle-Compatible Classes and Heterogeneous Arrays
	Methods Must Be Sealed
	Using the Template Technique

	Subclassing MATLAB Built-In Types
	MATLAB Built-In Types
	MATLAB Built-In Types

	Why Subclass Built-In Types
	Which Functions Work With Subclasses of Built-In Types
	Built-In Types You Cannot Subclass
	Classes that Subclass of Built-In Types

	Behavior of Built-In Functions with Subclass Objects
	Behavior Categories
	Subclasses That Define Properties
	More information on Built-In Methods
	Extending the Operations of a Built-In Class
	Built-In Methods That Operate on Data Values
	Built-In Methods That Operate on Data Organization
	Indexing Methods
	Concatenation Functions

	A Class to Manage uint8 Data
	Using the DocUint8 Class
	Indexing Operations
	Concatenation Operations
	Data Operations

	Subclasses of Built-In Types with Properties
	Methods Implemented
	Property Added
	Subclass with Properties
	Indexed Reference of a DocExtendDouble Object
	Concatenating DocExtendDouble Objects

	Understanding size and numel
	Subclass Inherited Behavior
	Classes Not Derived from Built-In Classes
	Changing the Behavior of size
	Avoid Overloading numel

	A Class to Represent Hardware
	Why Derive from int32
	Class Definition
	Using the Class with Methods of int32

	Determining the Class of an Array
	Querying the Class Name
	Testing for Class
	isa Returns True for Subclasses

	Testing for Specific Types
	Testing for Most Derived Class
	Testing for a Category of Types
	Another Test for Built-In Types

	Defining Abstract Classes
	Abstract Classes
	Abstract Class Terminology
	Implementing a Concrete Subclass

	Declaring Classes as Abstract
	Abstract Methods
	Abstract Properties
	Abstract Class

	Determine If a Class Is Abstract
	Display Abstract Member Names

	Find Inherited Abstract Properties and Methods

	Defining Interfaces
	Interfaces and Abstract Classes
	An Interface for Classes Implementing Graphs
	Interface Properties and Methods
	Interface Guides Class Design
	Defining the Interface
	Method to Work with All Subclasses
	Deriving a Concrete Class — linegraph
	Adding Properties
	The linegraph Constructor
	Implementing the draw Method
	Implementing the zoom Method
	Defining the Property Set Methods
	Using the linegraph Class

	Saving and Loading Objects
	Understanding the Save and Load Process
	The Default Save and Load Process
	What Information Is Saved
	Loading Property Data
	Errors During Load
	Saving and Loading Deleted Handle Objects
	saveobj and loadobj

	When to Modify Object Saving and Loading
	Why Implement saveobj and loadobj
	Information to Consider

	Modifying the Save and Load Process
	Class saveobj and loadobj Methods
	Implement loadobj as a Static Method

	Processing Objects During Load
	Updating an Object Property When Loading

	Save and Load Applications

	Maintaining Class Compatibility
	Versions of a Phone Book Application Program
	Version 1 — Stores Data in struct
	Version 2 — Maps struct Fields to Object Properties
	Version 3 — Adds More Properties to Class

	Passing Arguments to Constructors During Load
	Calling Constructors When Loading Objects
	Code for This Example
	Example Overview
	Saving Only Object Data with saveobj
	Reconstructing Objects with loadobj

	Saving and Loading Objects from Class Hierarchies
	Saving and Loading Subclass Objects
	Reconstructing the Subclass Object from a Saved Struct

	Saving and Loading Dynamic Properties
	Reconstructing Objects That Have Dynamic Properties
	Why You Need saveobj and loadobj Methods
	Implementing the saveobj and loadobj Methods

	Tips for Saving and Loading
	Using Default Property Values to Reduce Storage
	Reducing Object Storage
	Implementing Forward and Backward Compatibility

	Avoiding Property Initialization Order Dependency
	Controlling Property Loading

	When to Use Transient Properties
	Calling Constructor When Loading

	Enumerations
	Defining Named Values
	Kinds of Predefined Names
	Constant Properties
	Enumerations

	Working with Enumerations
	Basic Knowledge
	Defining Classes and Class Members
	Terminology and Concepts
	Using Enumeration Classes
	Constructing an Enumeration Member
	Default Methods
	Testing for Membership in a Set
	Using Enumerations in a Switch Statement
	Getting Information About Enumerations
	Converting to Superclass Value

	Defining Methods in Enumeration Classes
	Defining Properties in Enumeration Classes
	Array Expansion Operations
	Constructor Calling Sequence
	Restrictions Applied to Enumeration Classes
	Techniques for Defining Enumerations
	Simple Enumerated Names
	Enumerations with Built-In Class Behaviors
	Enumerations with Properties for Member Data

	Enumerations Derived from Built-In Types
	Basic Knowledge
	Why Derive Enumerations from Built-In Types
	Creating Enumeration Instances

	Aliasing Enumeration Names
	Superclass Constructor Returns Underlying Value
	Subclassing a Numeric Built-In Class

	Default Converter

	Mutable (Handle) vs. Immutable (Value) Enumeration Members
	Basic Knowledge
	Selecting Handle- or Value-Based Enumerations
	Value-Based Enumeration Classes
	Inherited Property SetAccess Must Be Immutable
	Enumeration Members Remain Constant
	Enumeration Member Properties Remain Constant

	Handle-Based Enumeration Classes
	An Enumeration Member Remains Constant
	Equality of Handle-Based Enumerations

	Using Enumerations to Represent a State

	Enumerations That Encapsulate Data
	Basic Knowledge
	Store Data in Properties
	Representing Colors
	Enumerations Defining Categories

	Saving and Loading Enumerations
	Basic Knowledge
	Built-In and Value-Based Enumeration Classes
	Simple and Handle-Based Enumeration Classes
	Causes: Loading as Struct Instead of Object
	Struct Fields

	Constant Properties
	Properties with Constant Values
	Defining Named Constants
	Assigning Values to Constant Properties
	Referencing Constant Properties
	Constants In Packages

	Constant Property Assigned a Handle Object
	Constant Property Assigned Any Class Instance

	Information from Class Metadata
	Class Metadata
	What Is Class Metadata?
	The meta Package
	Metaclass Objects
	Creating Metaclass Objects
	Metaclass Object Lifecycle
	Using Metaclass Objects

	Inspecting Class and Object Metadata
	Inspecting a Class
	Inspecting the Class Definition
	Inspecting Properties
	Inspecting an Instance of a Class

	Metaclass EnumeratedValues Property

	Finding Objects with Specific Values
	Find Handle Objects
	Find Property/Value Pairs
	Find Objects with Specific Property Names
	Using Logical Expressions

	Find by Attribute Settings
	Find Properties That Have Public Get Access
	Find Static Methods

	Getting Information About Properties
	The meta.property object
	Indexing Metaclass Objects

	How to Find Properties with Specific Attributes
	Find Property Attributes

	Find Default Values in Property Metadata
	meta.property Object
	meta.property Data
	Querying a Default Value
	Default Values Defined as Expressions
	Property With No Explicit Default Value
	Abstract Property
	Property With Expression That Errors
	Property With Explicitly Defined Default Value of Empty ([])

	Specializing Object Behavior
	Methods That Modify Default Behavior
	How to Modify Behavior
	Which Methods Control Which Behaviors
	Overloading and Overriding Functions and Methods
	Overloading
	Overriding

	When to Overload MATLAB Functions
	Example of Modified Behavior

	Caution When Overloading MATLAB Functions
	Interactions with numel and Overloaded subsref and subsasgn
	Ensuring MATLAB Calls Your Overloaded Method

	Redefining Concatenation for Your Class
	Default Concatenation
	Example of horzcat and vertcat

	Object Display
	Default Display
	Examples of disp Methods
	Relationship Between disp and display
	Overload disp Or disp and display

	Converting Objects to Another Class
	Why Implement a Converter
	Converters and Subscripted Assignment
	Examples of Converter Methods

	Indexed Reference and Assignment
	Overview
	Default Indexed Reference and Assignment
	What You Can Modify
	When to Modify Indexing Behavior

	subsref and subsasgn Within Class Methods — Built-In Called
	Understanding Indexed Reference
	Complex Indexed References
	Writing subsref
	Examples of subsref

	Avoid Overriding Access Attributes
	Understanding Indexed Assignment
	Indexed Assignment to Objects
	Complex Indexed Assignments

	A Class with Modified Indexing
	Class Description
	Specialized Subscripted Reference — subsref
	Specialized Subscripted Assignment — subsasgn
	Implementing Addition for Object Data — plus

	Defining end Indexing for an Object
	The end Method for the MyDataClass Example

	Using Objects as Indices
	Scenarios for Implementing Objects as Indices
	Implementing subsindex

	Implementing Operators for Your Class
	Overloading Operators
	Object Precedence
	Examples of Overloaded Operators

	MATLAB Operators and Associated Functions

	Implementing a Class for Polynomials
	A Polynomial Class
	Adding a Polynomial Object to the MATLAB Language
	Displaying the Class Files
	Summary of the DocPolynom Class
	Using the DocPolynom Class

	The DocPolynom Constructor Method
	Constructor Calling Syntax

	Removing Irrelevant Coefficients
	Converting DocPolynom Objects to Other Types
	The DocPolynom to Double Converter
	The DocPolynom to Character Converter
	Evaluating the Output

	The DocPolynom disp Method
	When MATLAB Calls the disp Method

	The DocPolynom subsref Method
	Special Behavior Requires Specializing subsref
	subsref Implementation Details

	Defining Arithmetic Operators for DocPolynom
	Defining the + Operator
	Defining the - Operator
	Defining the * Operator
	Using the Arithmetic Operators

	Overloading MATLAB Functions for the DocPolynom Class
	Defining the roots Function for the DocPolynom Class
	Defining the polyval Function for the DocPolynom Class
	Defining the diff Function for the DocPolynom Class
	Defining the plot Function for the DocPolynom Class

	Designing Related Classes
	A Simple Class Hierarchy
	Shared and Specialized Properties
	Designing a Class for Financial Assets
	Displaying the Class Files
	Summary of the DocAsset Class
	The DocAsset Constructor Method
	Property Definition Block
	Constructor Method Code
	Set Function for Type Property

	The DocAsset Display Method
	Designing a Class for Stock Assets
	Displaying the Class Files
	Summary of the DocStock Class
	Specifying the Base Class
	Property Definition Block
	Using the DocStock Class
	The DocStock Constructor Method
	The DocStock disp Method

	Designing a Class for Bond Assets
	Displaying the Class Files
	Summary of the DocBond Class
	Specifying the Base Class
	Property Definition Block
	Using the DocBond Class
	The DocBond Constructor Method
	The calc_value Method
	The DocBond disp Method

	Designing a Class for Savings Assets
	Displaying the Class Files
	Summary of the DocSavings Class
	Specifying the Base Class
	Property Definition Block
	Using the DocSavings Class
	The DocSavings Constructor Method
	The DocSavings disp Method

	Containing Assets in a Portfolio
	Kinds of Containment
	Designing the DocPortfolio Class
	Displaying the Class Files
	Summary of the DocPortfolio Class
	Property Definition Block
	How Class Properties Are Used
	Using the DocPortfolio Class

	The DocPortfolio Constructor Method
	The DocPortfolio disp Method
	The DocPortfolio pie3 Method
	Visualizing a Portfolio

	Index

	tables
	DocPolynom Class Properties
	DocPolynom Class Methods
	DocAsset Class Properties
	DocAsset Class Methods
	DocStock Class Properties
	DocStock Class Methods
	DocBond Class Properties
	DocBond Class Methods
	DocSavings Class Properties
	DocSavings Class Methods
	DocPortfolio Class Properties
	DocBond Class Methods

